山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 43-49.doi: 10.6040/j.issn.1672-3961.0.2016.122
张玉婷1,3,李望1,2,王晨光1,刘友权1,侍红军1*
ZHANG Yuting1,3, LI Wang1,2, WANG Chenguang1, LIU Youquan1, SHI Hongjun1*
摘要: 基于李雅普诺夫稳定性理论,对不连续耦合的时滞复杂动态网络进行分析,得到网络同步的充分条件,并且给出网络实现同步时滞的上界估计。研究表明:即使网络之间的耦合是不连续的,只要时滞满足一定条件,网络也可以实现同步,且网络容许的时滞上界与耦合强度、网络代数连通性以及耦合的开关率相关。数值模拟中利用Ikeda系统作为节点动力学,采用误差函数作为网络同步性指标,给出网络同步误差演化轨迹和各状态的演化轨迹,并进一步分析控制参数对同步速度的影响,模拟结果验证了理论结果的正确性。
中图分类号:
[1] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684):440-442. [2] BARABÁSIA L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. [3] 郭雷, 许晓鸣. 复杂网络[M]. 上海:上海科技教育出版社, 2006. [4] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社, 2006. [5] ARENAS A, DÍAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153. [6] 何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2009. [7] 赵永清, 江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版), 2010, 40(3):61-68. ZHAO Yongqing, JIANG Minghui. Adaptive synchronous feedback control of mixed time-varying delayed and double-linked complex networks[J]. Journal of Shangdong University(Engineering Science), 2010, 40(3):61-68. [8] 李望, 石咏, 马继伟. 复杂动态网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2):61-68. LI Wang, SHI Yong, MA Jiwei. Finite-time outer synchronization of complex dynamical networks[J]. Journal of Shangdong University(Engineering Science), 2013, 43(2):61-68. [9] 孙炜伟, 王玉振. 几类时滞非线性哈密顿系统的稳定性分析[J]. 山东大学学报(理学版), 2007, 42(12):1-9. SUN Weiwei, WANG Yuzhen. Stability analysis for some classes of time-delay nonlinear Hamiltonian systems[J]. Journal of Shangdong University(Natural Science), 2007, 42(12):1-9. [10] PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems[J]. Physical Review Letters, 1998, 80(10): 2109-2112. [11] WANG Xiaofan, CHEN Guanrong. Synchronization in small-world dynamical networks[J]. International Journal of Bifurcation & Chaos, 2002, 12(1):187-192. [12] WANG Xiaofan, CHEN Guanrong. Synchronization in scale-free dynamical networks: robustness and fragility[J]. IEEE Transactions on Circuits System I, 2002, 49(1):54-62. [13] LU Jinhu, CHEN Guanrong. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6):841-846. [14] WU Xiaoqun, ZHENG Weixing, ZHOU Jin. Generalized outer synchronization between complex dynamical networks[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2009, 19(1):193-204. [15] 涂俐兰, 陆君安. 一类时滞动力网络的时滞相关稳定性[J]. 复杂系统与复杂性科学, 2007, 4(2):33-38. TU Lilan, LU Junan. Delay-dependent stability conditrons in general concplex delayed dynamical networks[J]. Complex System and Complexity Science, 2007, 4(2):33-38. [16] ZHANG Lixian, BOUKAS E K, LAM J. Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities[J]. IEEE Transactions on Automatic Control, 2008, 53(10):2458-2464. [17] CHIOU J S. Stability analysis for a class of switched large-scale time-delay systems via time-switched method[J]. IEEE Proceedings: Control Theory and Applications, 2006, 153(6):684-688. [18] CAO Jinde, WANG Zidong, SUN Yonghui. Synchronization in an array of of linearly stochastically coupled networks with time delay[J]. Physica A, 2007, 385(2): 718-728. [19] YU Wenwu, CAO Jinde. Synchronization control of stochastic delayed neural networks[J]. Physica A, 2007, 373(1):252-260. [20] HUNT D, KOMISS G, SZYMANSKI B K. Network synchronization in a noisy environment with time delays: fundamental limits and trade-offs[J]. Physical Review Letters, 2010, 105(6):2155-2212. [21] CHEN Liquan, QIU Chengfeng, HUANG H B. Synchronization with on-off coupling: role of time scales in network dynamics[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2009, 79(4 Pt 2):045-101. [22] CHEN Liquan, QIU Chengfeng, HUANG H B. Facilitated synchronization of complex networks through a discontinuous coupling strategy[J]. The European Physical Journal B, 2010, 76(4):625-635. [23] SUN Yongzheng, WANG Li, ZHAO Donghua. Outer synchronization between two complex dynamical networks with discontinuous coupling[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2012, 22(4):517-525. [24] 张颖, 段广仁. 时滞离散切换系统基于观测器的输出反馈镇定[J]. 山东大学学报(工学版), 2005, 35(3):40-43. ZHANG Ying, DUAN Guangren. Observer-based output feedback stabilization for a class of discrete-time switched systems with time-delay[J]. Journal of Shangdong University(Engineering Science), 2005, 35(3):40-43. [25] ZHOU Jin, CHEN Tianping. Synchronization in general complex delayed dynamical networks[J]. Circuits & Systems I Regular Papers IEEE Transactions on, 2006, 53(3):733-744. [26] CHIOU J, WANG C, CHENG Chunming. On delay-dependent stabilization analysis for the switched time-delay systems with the state-driven switching strategy[J]. Journal of the Franklin Institute, 2011, 348(9):2292-2307. |
[1] | 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报(工学版), 2018, 48(5): 85-90. |
[2] | 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94. |
[3] | 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60. |
[4] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
[5] | 宋正强,杨辉玲,肖丹. 基于在线粒子群优化方法的IPMSM驱动电流和速度控制器[J]. 山东大学学报(工学版), 2018, 48(1): 112-116. |
[6] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[7] | 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209. |
[8] | 毛北行,程春蕊. 分数阶Victor-Carmen混沌系统的自适应滑模控制[J]. 山东大学学报(工学版), 2017, 47(4): 31-36. |
[9] | 侯广松,高军,吴衍达,张欣,邓影,李常刚,张亚萍. 输电线路参数与运行方式的相关性分析[J]. 山东大学学报(工学版), 2017, 47(4): 89-95. |
[10] | 李望,马志才,侍红军. 时滞复杂动态网络的有限时间随机广义外部同步[J]. 山东大学学报(工学版), 2017, 47(3): 1-8. |
[11] | 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15. |
[12] | 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88. |
[13] | 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83. |
[14] | 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126. |
[15] | 侯明冬,王印松,田杰. 积分时滞对象的一种内模PID鲁棒控制方法[J]. 山东大学学报(工学版), 2016, 46(5): 64-67. |
|