山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 54-61.doi: 10.6040/j.issn.1672-3961.0.2016.311
王志强1,文益民1,2*,李芳1,2
WANG Zhiqiang1, WEN Yimin1,2*, LI Fang1,2
摘要: 针对传统的协同过滤(collaborative filtering, CF)推荐模型中利用单一的总体评分进行相似性计算,但总体评分不能准确反映用户对物品喜好的问题,提出基于多方面评分的景点协同推荐算法。该算法综合利用用户对景点在景色、趣味性、性价比三个方面的评分计算用户或景点之间的相似性,进而计算目标用户对目标景点的总体评分。试验结果表明:在相似性计算中引入景点在这三个方面的评分信息后,推荐结果的均方根误差、平均绝对误差、覆盖率、准确率和F-度量指标都得到了改善。
中图分类号:
[1] 乔向杰,张凌云. 近十年国外旅游推荐系统的应用研究[J].旅游学刊,2014,29(8):117-127. QIAO Xiangjie, ZHANG Lingyun. Study on the application of foreign tourism recommendation system in recent ten years[J]. Tourism Tribune, 2014, 29(8):117-127. [2] 文益民,史一帆,蔡国永,等.个性化旅游推荐研究综述[EB/OL].[2014-07-03].http://www.paper.edu.cn/releasepaper/content/201407-56. [3] 史一帆,文益民.基于景点标签的协同过滤推荐[J].计算机应用,2014, 34(10):2854-2858. SHI Yifan, WEN Yimin. Collaborative filtering recommendation based on tags of scenic spots[J]. Journal of Computer Applications, 2014, 34(10): 2854-2858. [4] 雷震,文益民,王志强,等.基于影响力控制的热传导算法[J].智能系统学报,2016, 11(3):328-335. LEI Zhen, WEN Yimin, WANG Zhiqiang, et al. Heat conduction controlled by the influence of users and items[J]. CAAI Transactions on Intelligent Systems, 2016, 11(3):328-335. [5] 庞俊涛,张晖,杨春明,等.基于概率矩阵分解的多指标协同过滤算法[J].山东大学学报(工学版),2016,46(3):65-73. PANG Juntao, ZHANG Hui, YANG Chunming, et al. Multi-criteria collaborative filtering algorithm based on probabilistic matrix factorization[J]. Journal of Shandong University(Engineering Science), 2016, 46(3):65-73. [6] MAGID A, CHEN L, CHEN G, et al. A context-aware personalized travel recommendation system based on geotagged social media data mining[J]. International Journal of Geographical Information Science, 2013, 27(4):662-684. [7] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. [8] LINDEN G, SMITH B, YORK J. Amazon.com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80. [9] DAS A S, DATAR M, GARG A, et al. Google news personalization: scalable online collaborative filtering[C] //Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM, 2007: 271-280. [10] BENNETT J, ELKAN C, LIU B, et al. KDD Cup and workshop 2007[J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2):51-52. [11] RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C] // Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York, USA: ACM, 1994: 175-186. [12] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] // Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China: ACM, 2001: 285-295. [13] CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems, 2013, 37(1):146-153. [14] LIU H F, HU Z, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014, 56(3):156-166. [15] ZHANG J, PENG Q, SUN S Q, et al. Collaborative filtering recommendation algorithm based on user preference derived from item domain features[J]. Physica A: Statistical Mechanics and its Applications, 2014, 396(15):66-76. [16] YU X, WANG Z. A enhanced trust model based on social network and online behavior analysis for recommendation[C] // Proceedings of International Conference on Computational Intelligence and Software Engineering. Wuhan, China: IEEE, 2010: 1-4. [17] CHANG Q, WANG X K, YIN D, et al. The new similarity measure based on user preference models for collaborative filtering[C] // Proceedings of the 2015 IEEE International Conference on Information and Automation. Lijiang, China: IEEE, 2015: 557-582. [18] 文俊浩, 舒珊.一种改进相似性度量的协同过滤推荐算法[J]. 计算机科学, 2014,41(5):68-71. WEN Junhao, SHU Shan. Improved collaborative filtering recommendation algorithm of similarity measure[J]. Computer Science, 2014, 41(5):68-71. [19] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C] // Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. Madison, USA: Morgan Kaufmann Publishers Inc, 1998: 43-52. [20] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012. [21] 李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538. LI Cong, LIANG Changyong, MA Li. A collaborative filtering recommendation algorithm based on domain nearest neighbor[J]. Journal of Computer Research and Development, 2008, 45(9):1532-1538. |
[1] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[2] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[3] | 崔晓松,王颖,孟佳, 邹丽. 基于语言值相似度推理的网络商家自评价方法[J]. 山东大学学报(工学版), 2018, 48(1): 1-7. |
[4] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[5] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[6] | 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70. |
[7] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[8] | 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14. |
[9] | 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22. |
[10] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[11] | 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27. |
[12] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[13] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[14] | 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34. |
[15] | 朱红, 丁世飞. 变粒度二次聚类方法[J]. 山东大学学报(工学版), 2015, 45(3): 1-6. |
|