您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 62-68.doi: 10.6040/j.issn.1672-3961.0.2016.095

• • 上一篇    下一篇

大规模动态系统的分布式状态估计算法

孙一冰1,付敏跃2,3*,王炳昌1,张焕水1   

  1. 1.山东大学控制科学与工程学院, 山东 济南 250061;2.纽卡斯尔大学电气工程与计算机科学学院, 澳大利亚 新南威尔士州 纽卡斯尔 2308;3.广东工业大学自动化学院, 广东 广州 510006
  • 收稿日期:2016-03-18 出版日期:2016-12-20 发布日期:2016-03-18
  • 通讯作者: 付敏跃(1958— ),男,浙江台州人,教授,博士,主要研究方向为网络控制系统, 智能电网, 信号处理与通讯, 量化反馈控制. ;E-mail:minyue.fu@newcastle.edu.au E-mail:sun_yibing@126.com
  • 作者简介:孙一冰(1987— ),男,山东威海人,博士研究生,主要研究方向为分布式状态估计. E-mail:sun_yibing@126.com
  • 基金资助:
    国家自然科学基金资助项目(61120106011,61573221,61403233);国家科技支撑计划资助项目(2014BAF07B03)

Distributed state estimation algorithm for large-scale dynamic systems

SUN Yibing1, FU Minyue2,3*, WANG Bingchang1, ZHANG Huanshui1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Electrical Engineering and Computer Science, University of Newcastle, NSW 2308, Australia;
    3. School of Automation, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2016-03-18 Online:2016-12-20 Published:2016-03-18

摘要: 主要研究离散时间大规模动态系统的分布式状态估计问题。首先,将系统划分为若干个子系统,基于区域内部量测信息和邻居传递的信息,各子系统利用该算法对本地状态进行估计,降低状态变量的维数、算法的计算复杂度和通信压力。该算法独立运行,并且平行运行该算法可以有效减少整体运行时间。通过减弱约束条件,利用数学归纳法证明由该算法得到的估计误差协方差和预测误差协方差矩阵正定。根据系统能观测性秩判据和不等式技巧,证明误差协方差矩阵有上界,并且上界是有界的,保证该算法在应用中的可行性。最后通过仿真研究,验证主要结论。

关键词: 状态估计, 电力系统, 分布式估计, 最大后验估计, 动态系统

Abstract: The problem of distributed state estimation over discrete-time large-scale dynamic systems was studied. The system was divided into some subsystem, and based on the local measurement and the information received from its neighbors, each subsystem utilized the proposed algorithm to estimate its local state, which reduced the dimension of the state vector, and enjoyed low computational complexity and communication load. This algorithm was run independently and in parallel to effectively reduce the overall execution time. By weakening the constraint condition, the mathematical induction was used to prove that the state estimation and prediction error covariance matrices obtained from this algorithm were positive definite. The rank criterion of system observability together with the inequality technique were utilized to prove that error covariance matrices had upper bounds and the upper bounds were also existence and bounded, which supported the feasibility of this algorithm in applications. At last, simulations of an example were provided to demonstrate the main results.

Key words: state estimation, power system, dynamic system, distributed state estimation, MAP estimation

中图分类号: 

  • TM744
[1] ABUR A, EXPOSITO A G. Power system state estimation: theory and implementation[M]. New York, USA: Marcel Dekker Press, 2004.
[2] WU F F, MOSLEHI K, BOSE A. Power system control centers: past, present, and future[J]. Proceedings of the IEEE, 2005, 93(11):1890-1908.
[3] MONTICELLI A. Electric power system state estimation[J]. Proceedings of the IEEE, 2000, 88(2):262-282.
[4] SHIH K R, HUANG S J. Application of a robust algorithm for dynamic state estimation of a power system[J]. IEEE Transactions on Power Systems, 2002, 17(1):141-147.
[5] LIN J M, HUANG S J, SHIH K R. Application of sliding surface-enhanced fuzzy control for dynamic state estimation of a power system[J]. IEEE Transactions on Power Systems, 2003, 18(2):570-577.
[6] DO COUTTO FILHO M B, DE SOUZA J C S. Forecasting-aided state estimation-part I: panorama[J]. IEEE Transactions on Power Systems, 2009, 24(4):1667-1677.
[7] LEITE D A SILVA A M, DO COUTTO FILHO M B, DE QUEIROZ J F. State forecasting in electric power systems[J]. IEE Proceedings-Generation, Transmission and Distribution, 1983, 130(5):237-244.
[8] HUANG S J, LIN J M. Enhancement of anomalous data mining in power system predicting-aided state estimation[J]. IEEE Transactions on Power Systems, 2004, 19(1):610-619.
[9] WANG Shaobu, GAO Wenzhong, MELIOPOULOS A P S. An alternative method for power system dynamic state estimation based on unscented transform[J]. IEEE Transactions on Power Systems, 2012, 27(2):942-950.
[10] VALVERDE G, TERZIJA V. Unscented Kalman filter for power system dynamic state estimation[J]. IET Generation, Transmission & Distribution, 2011, 5(1):29-37.
[11] REGULSKI P, TERZIJA V. Estimation of frequency and fundamental power components using an unscented Kalman filter[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(4):952-962.
[12] LI Yao, HE Xing, ZHANG Weidong. Applications of adaptive CKF algorithm in short-term load forecasting of smart grid[C] //Proceedings of the 33rd Chinese Control Conference(CCC). Nanjing, China: [s.n.] , 2014: 8145-8149.
[13] 陈亮, 毕天姝, 李劲松, 等. 基于容积卡尔曼滤波的发电机动态状态估计[J]. 中国电机工程学报, 2014, 34(16):2706-2713. CHEN Liang, BI Tianshu, LI Jinsong, et al. Dynamic state estimator for synchronous machines based on cubature Kalman filter[J]. Proceedings of the CSEE, 2014, 34(16):2706-2713.
[14] 李阳林, 卫志农, 万军彪. 一种新的分布式电力系统状态估计算法[J]. 继电器, 2007, 35(20):13-22. LI Yanglin, WEI Zhinong, WAN Junbiao. A new algorithm for the distributed state estimation of power systems[J]. Relay, 2007, 35(20):13-22.
[15] SHARMA A, SRIVASTAVA S C, CHAKRABARTI S. Multi-agent-based dynamic state estimator for multi-area power system[J]. IET Generation, Transmission & Distribution, 2016, 10(1):131-141.
[16] FENG Jianxin, ZENG Ming. Optimal distributed Kalman filtering fusion for a linear dynamic system with cross-correlated noises[J]. International Journal of Systems Science, 2012, 43(2): 385-398.
[17] LANG Jinling, WANG Zidong, LIU Xiaohui. Distributed state estimation for discretetime sensor networks with randomly varying nonlinearities and missing measurements[J]. IEEE Transactions on Neural Networks, 2011, 22(3):66-86.
[18] MARELLI D, FU Minyue. Distributed weighted least-squares estimation with fast convergence for large-scale systems[J]. Automatica, 2015, 51:27-39.
[19] SUN Yibing, FU Minyue, WANG Bingchang, et al. A distributed MAP approach to dynamic state estimation with applications in power networks[C] //Proceedings of the 2015 European Control Conference(ECC). Linz, Austria: [s.n.] , 2015: 235-240.
[20] MAKRIDAKIS S, WHEELWRIGHT S C. Forecasting methods and applications[M]. New York, USA: Wiley Press, 1978.
[1] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[2] 王辉,陈立征,周刚,刘泊辰,于洋,刘刚,冯忠奎,靳宗帅. 基于WAMS Light的配电网电压安全在线评估[J]. 山东大学学报(工学版), 2017, 47(6): 39-45.
[3] 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135.
[4] 赵英弘,何潇,周东华. 一类含有传感器故障的网络化系统容错估计[J]. 山东大学学报(工学版), 2017, 47(5): 71-78.
[5] 侯广松,高军,吴衍达,张欣,邓影,李常刚,张亚萍. 输电线路参数与运行方式的相关性分析[J]. 山东大学学报(工学版), 2017, 47(4): 89-95.
[6] 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71.
[7] 兰义华,任浩征*,张勇,赵雪峰. 一种基于“当前”模型的改进卡尔曼滤波算法[J]. 山东大学学报(工学版), 2012, 42(5): 12-17.
[8] 潘志远1, 韩学山1*, 刘超男2. 交流潮流约束下的机组组合求解[J]. 山东大学学报(工学版), 2012, 42(2): 130-137.
[9] 丁信忠1,张承瑞1*,李虎修1,于乐华2. 永磁同步电机的转动惯量辨识及状态估计[J]. 山东大学学报(工学版), 2012, 42(2): 70-76.
[10] 孙甲冰1,2,张承进1*. 有丢包的随机不确定参数系统的最优融合滤波[J]. 山东大学学报(工学版), 2011, 41(6): 59-65.
[11] 杨朋朋,王葵,李磊,赵兰明. 机组组合问题的两层优化研究[J]. 山东大学学报(工学版), 2011, 41(3): 167-172.
[12] 刘允刚. 一类一阶控制系数未知非线性系统有限时间镇定[J]. 山东大学学报(工学版), 2009, 39(3): 37-46.
[13] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31-36.
[14] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69-76.
[15] 王剑 张善. 考虑不可行度的改进遗传算法在电压无功调整中的研究[J]. 山东大学学报(工学版), 2008, 38(6): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 庞志俭 张长桥. 甲基丙烯酸十二酯基二元共聚制备缔合减阻剂的合成与性能研究[J]. 山东大学学报(工学版), 2009, 39(5): 128 -132 .
[6] 陈朋 胡文容 裴海燕. 一株反硝化细菌LZ-14的筛选及其脱氮特性[J]. 山东大学学报(工学版), 2009, 39(5): 133 -138 .
[7] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[8] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[9] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .
[10] 李善评,胡振,孙一鸣,甄博如,张启磊,曹翰林 . 新型钛基PbO2电极的制备及电催化性能研究[J]. 山东大学学报(工学版), 2007, 37(3): 109 -113 .