您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 103-110.doi: 10.6040/j.issn.1672-3961.0.2016.220

• • 上一篇    下一篇

全球能源互联网物理-信息系统协同仿真平台

褚晓东1,2,张荣祥1,2,黄昊怡1,2,唐茂森1,2   

  1. 1. 全球能源互联网(山东)协同创新中心, 山东 济南 250061;2. 山东大学电气工程学院, 山东 济南 250061
  • 收稿日期:2016-06-20 出版日期:2016-08-20 发布日期:2016-06-20
  • 作者简介:褚晓东(1978— ),女,山东济南人,副教授,博士,主要研究方向为电力系统稳定分析与控制,能源物理-信息系统建模与仿真等. E-mail: chuxd@sdu.edu.cn
  • 基金资助:
    国家电网公司总部科技项目资助项目

Synergetic physical-cyber simulation platform for global energy interconnection

CHU Xiaodong1,2, ZHANG Rongxiang1,2, HUANG Haoyi1,2, TANG Maosen1,2   

  1. 1. Collaborative Innovation Center for Global Energy Interconnection(Shandong), Jinan 250061, Shandong, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2016-06-20 Online:2016-08-20 Published:2016-06-20

摘要: 在分析全球能源互联网物理-信息系统耦合机制的基础上,对多层级能源网络的结构特点、仿真需求、方法工具进行了比较分析。针对负荷分散控制问题,搭建了物理-信息协同仿真平台。仿真结果表明,通信环境对负荷控制效果具有显著影响,协同仿真平台能够准确反映这一影响,说明了协同仿真的必要性。

关键词: 能源互联网, 信息-物理系统, 仿真, 通信, 复杂网络, 系统动力学

Abstract: The coupling mechanisms between physical and cyber systems of the global energy interconnection were explained briefly. The structural characteristics, simulation requirements, and associated tools were compared for multiple levels of energy networks. A synergetic physical-cyber simulation platform was constructed for the decentralized load control scenarios. The simulation results reflected the great impact of communication environment on the load control effects, which could be correctly modelled by the synergetic simulation platform.

Key words: cyber physical system(CPS), simulation, communication, system dynamics, complex network, energy interconnection

中图分类号: 

  • TM73
[1] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社,2015.
[2] 殷红旭. 网络安全引起电力系统级联失效的建模和仿真分析[D]. 北京:华北电力大学,2012. YIN Hongxu. Modeling and simulation of power system cascading failures caused by network security[D]. Beijing:North China Electric Power University, 2012.
[3] 王丹辉,王安. 针对分组密码 S 盒的能量分析攻击效率研究[J]. 山东大学学报(工学版),2014,44(2):6-11. WANG Danhui, WANG An. The efficiency of power analysis attack based on S-boxes of block ciphers[J]. Journal of Shandong University(Engineering Science), 2014, 44(2):6-11.
[4] RINALDI S M, PEERENBOOM J P, KELLY T K. Identifying,understanding,and analyzing critical infrastructure interdependencies[J]. IEEE Control Systems Magazine, 2001, 21(6):11-25.
[5] 陈晓刚,孙可,曹一家. 基于复杂网络理论的大电网结构脆弱性分析[J]. 电工技术学报,2007,22(10):138-144. CHEN Xiaogang, SUN Ke, CAO Yijia. Structural vulnerability analysis of large power grid based on complex network theory[J]. Transactions of China Electrotechnical Society, 2007, 22(10):138-144.
[6] 范文礼,刘志刚. 基于复杂网络的电网连锁故障模型研究综述[J]. 电力系统自动化,2012,36(16):124-131. FAN Wenli, LIU Zhigang. An overview on modeling of cascading failures in power grids based on complex system[J]. Automation of Electric Power Systems, 2012, 36(16):124-131.
[7] 蔡巍,赵海,王进法,等. 能源互联网宏观结构的统一网络拓扑模型[J]. 中国电机工程学报,2015,35(14):3503-3510. CAI Wei, ZHAO Hai, WANG Jinfa, et al. A unifying network topological model of the energy internet macro-scope structure[J]. Proceedings of the CSEE, 2015, 35(14):3503-3510.
[8] TOMSOVIC K, BAKKEN D E, VENKATASUBRAMANIAN V. Designing the next generation of real-time control,communication,and computations for large power systems[J]. Proceedings of the IEEE, 2005, 93(5):965-979.
[9] 庄伟,牟龙华. 智能配电网信息物理融合保护系统的研究[J]. 电力系统保护与控制,2012,40(4):113-118. ZHUANG Wei, MU Longhua. Study on cyber-physical relaying protection system of intelligent distribution network[J]. Power System Protection and Control, 2012, 40(4):113-118.
[10] 董朝阳,赵俊华,文福栓,等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化,2014,38(15):1-11. DONG Zhaoyang, ZHAO Junhua, WEN Fushuan, et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15):1-11.
[11] 田世明,栾文鹏,张东霞,等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报,2015,35(14):3482-3494. TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494.
[12] National Science Foundation of the United States. Cyber physical system(CPS)program solicitation[EB/OL]. [2016-05-01]. http://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm.
[13] 赵俊华,文福栓,薛禹胜,等. 电力CPS的架构及其实现技术与挑战[J]. 电力系统自动化,2010,34(16):1-7. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Cyber physical power systems: architecture,implementation technologies and chanllenges[J]. Automation of Electric Power Systems, 2010, 34(16):1-7.
[14] 赵俊华,文福栓,薛禹胜,等. 电力信息物理融合系统的建模分析与控制研究框架[J]. 电力系统自动化, 2011, 35(16):1-8. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Modeling analysis and control research framework of cyber physical power systems[J]. Automation of Electric Power Systems, 2011, 35(16):1-8.
[15] ILIC M D, XIE L, KHAN U A, et al. Modeling of future cyber-physical energy systems for distributed sensing and control[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40(4):825-838.
[16] LI W, FERDOWSIF M, STEVIC M, et al. Cosimulation for smart grid communications[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4):2374-2384.
[17] 刘东,盛万兴,王云,等. 电网信息物理系统的关键技术及其进展[J]. 中国电机工程学报,2015,35(14):3522-3531. LIU Dong, SHENG Wanxing, WANG Yun, et al. Key technologies and trends of cyber physical systems for power grid[J]. Proceedings of the CSEE, 2015, 35(14):3522-3531.
[18] UNSIHUAY-VILA C, MARANGON-LIMA J W, DE SOUZA A C Z, et al. A model to long-term, multiarea, multistage, and integrated expansion planning of electricity and natural gas systems[J]. IEEE Transactions on Power Systems, 2010, 25(2):1154-1168.
[19] SALDARRIAGA C A, HINCAPIE R A, SALAZAR H. A holistic approach for planning natural gas and electricity distribution networks[J]. IEEE Transactions on Power Systems, 2013, 28(4):4052-4063.
[20] 王寿喜,曾自强. 天然气管网静动态仿真[J]. 天然气工业,1995,15(2):59-63. WANG Shouxi, ZENG Ziqiang. Static and dynamic emulation of nature gas pipeline network[J]. Natural Gas Industry, 1995, 15(2):59-63.
[21] 田子平,鲍福民. 特大型热网的计算机实时仿真[J].上海交通大学学报,2000,34(4):486-491. TIAN Ziping, BAO Fumin. Real time simulation in computer for oversize heat network[J]. Journal of Shanghai Jiatong University, 2000, 34(4):486-491.
[22] ESPATOLERO S, CORTES C, ROMEO L M. Optimization of boiler cold-end and integration with the steam cycle in supercritical units[J]. Applied Energy, 2010, 87(5):1651-1660.
[23] LIN H, VEDA S S, SHUKLA S S, et al. GECO: global event-driven co-simulation framework for interconnected power system and communication network[J]. IEEE Transactions on Smart Grid, 2012, 3(3):1444-1456.
[24] MODELISAR Consortium. Functional mock-up interface for model exchange version 1.0[EB/OL]. [2016-05-01]. https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf.
[25] HOPKINSON K, WANG X, GIOVANINI R, et al. EPOCHS: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components[J]. IEEE Transactions on Power Systems, 2006, 21(2):548-558.
[26] CHATZIVASILEIADIS S, BONVINI M, MATANZA J, et al. Cyber physical modeling of distributed resources for distribution system operations[J]. Proceedings of the IEEE, 2016, 104(4):789-806.
[27] FORRESTER J W. Industrial dynamics[M]. Cambridge,MA:The MIT Press,1961.
[28] 于松青,侯承昊,孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版),2015,45(6):91-98. YU Songqing, HOU Chenghao, SUN Yingtao. Power demand forecasting in Shandong province with system dynamics[J]. Journal of Shandong University(Engineering Science), 2015, 45(6):91-98.
[29] MORECROFT J D W. Strategic modelling and business dynamics: a feedback systems approach[M]. Chichester:John Wiley & Sons, 2007.
[30] STERMAN J D. System dynamics modeling:tools for learning in a complex world[J]. California Management Review, 2001, 43(4):8-25.
[31] ADANE T F, NICOLESCU M. System dynamics analysis of energy usage: case studies in automotive manufacturing[J]. International Journal of Manufacturing Research, 2014, 9(2):131-156.
[32] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291):1025-1028.
[33] GAO J, BULDYREV S V, STANLEY H E, et al. Networks formed from interdependent networks[J]. Nature physics, 2012, 8(1):40-48.
[34] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks[J]. Physics Reports, 2014, 544(1):1-122.
[35] PALSETIA D, PATWARY M M A, AGRAWAL A, et al. Excavating social circles via user interests[J]. Social Network Analysis and Mining, 2014, 4(1):1-12.
[36] CELLI G, PEGORARO P, PILO F, et al. DMS cyber-physical simulation for assessing the impact of state estimation and communication media in smart grid operation[J]. IEEE Transactions on Power Systems, 2014, 29(5):2436-2446.
[1] 代时雨,刘淑琴. 状态观测器对磁悬浮平台速度与加速度的估算[J]. 山东大学学报(工学版), 2018, 48(2): 114-120.
[2] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[3] 邵健,魏佩瑜,陈平,梁凤强,孟超. 基于组合行波测距原理的T型线路测距方法[J]. 山东大学学报(工学版), 2018, 48(1): 117-123.
[4] 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156.
[5] 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6.
[6] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[7] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[8] 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133.
[9] 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142.
[10] 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150.
[11] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[12] 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49.
[13] 李望,马志才,侍红军. 时滞复杂动态网络的有限时间随机广义外部同步[J]. 山东大学学报(工学版), 2017, 47(3): 1-8.
[14] 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15.
[15] 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 蔡晓军1 ,张擎1 ,柴乔林1 ,孔苏丽2 . 基于能量均衡的n分多路径路由算法[J]. 山东大学学报(工学版), 2009, 39(2): 141 -145 .
[9] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[10] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .