您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 111-116.doi: 10.6040/j.issn.1672-3961.0.2016.235

• • 上一篇    下一篇

基于NASA观测数据的风电出力时空分布及波动特性分析

刘晓明1,牛新生1,张怡2,曹本庆2,施啸寒2,张友泉3,张杰1,安鹏3,汪湲3   

  1. 1. 国网山东省电力公司经济技术研究院, 山东 济南 250001;2. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;3. 国网山东省电力公司, 山东 济南 250001
  • 收稿日期:2016-06-29 出版日期:2016-08-20 发布日期:2016-06-29
  • 作者简介:刘晓明(1984— ),男,山东海阳人,工程师,硕士,主要研究方向为电力系统规划与运行控制.E-mail:416582710@qq.com

Analysis of spatial and temporal distribution of wind power output and variation characteristics based on NASA observation data

LIU Xiaoming1, NIU Xinsheng1, ZHANG Yi2, CAO Benqing2, SHI Xiaohan2,ZHANG Youquan3, ZHANG Jie1, AN Peng3, WANG Yuan3   

  1. 1. Economic &
    Technology Research Institute, State Grid Shandong Electirc Power Company, Jinan 250001, Shandong, China;
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    3. State Grid Shandong Electirc Power Company, Jinan 250001, Shandong, China
  • Received:2016-06-29 Online:2016-08-20 Published:2016-06-29

摘要: 为克服实际风电场运行数据难以获取的问题,提出一种基于历史风速的风资源评估方法。首先,基于美国NASA(National aeronautics and space administration)数据中心获取风速数据,并利用假想风电机组模型转化为风机出力时间序列;然后,通过对时间序列的统计分析,计算期望、半载概率等指标评估风电出力的时空分布特性;最后,通过计算风电出力方差和分析相邻峰谷点差值概率分布规律分析风电出力的波动特性。所提方法能够同时考虑风资源自然特性和风电机组特性,且能对风电波动特性提供定量描述。利用所提方法对山东省风资源的评估结果表明:山东省可利用风能资源随地区、季节和昼夜的变化呈现出明显规律。

关键词: 风资源评估, 波动特性, 风机特性, 概率统计, 时空分布特性

Abstract: In order to overcome the difficulties of acquiring operation data of the practical wind farms, an estimation method of wind energy resources based on the history wind speed has been put forward. First, the wind speed data was acquired from the NASA data center and was converted to the the output sequence of an imaginary wind turbine, and then the indexes such as expectation and probability of half load were calculated by statically analyisis of the wind turbine output sequence to evaluate the spatial and temporal distribution of the wind energy. Finally, the variance of the wind power output as well as the statistical law of the wind power output differences between adjacent peak and valley points were calculated to analyze the variation characteristics of the wind energy. The proposed method could take the nature of wind energy resources as well as the characteristics of wind turbine into consideration and quantitatively describe the variance of the wind power ouput. The method was used to analyze the wind energy resources in Shandong Province and the results showed that the technological available wind energy varies with regions, seasons as well as day and night in an obvious law.

Key words: spatial and temporal distribution, variation characteristic analysis, wind turbine characteristic, wind energy resource estimation, probability and statistics

中图分类号: 

  • TM315
[1] 路甬祥. 清洁、可再生能源利用的回顾与展望[J]. 科技导报, 2014(28): 15-26. LU Yongxiang. Review and prospect of clean, renewable energy utilization[J]. Science & Technology Review, 2014(28): 15-26.
[2] JAXOBSON M Z, DELUCCHI M A. Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy Policy, 2011, 39(3): 1154-1169.
[3] 韩芳. 我国可再生能源发展现状和前景展望[J]. 可再生能源, 2010, 28(4): 137-140. HAN Fang. Development status and prospect of renewable energy in China[J]. Renewable Energy Resources, 2010, 28(4): 137-140.
[4] 于汉启. 风电技术的发展及风机选型[J]. 电网与清洁能源, 2009, 25(12): 84-86. YU Hanqi. Wind power technology development and fan selection[J]. Power System and Clean Energy, 2009, 25(12): 84-86.
[5] 王孚懋, 郭晓斌, 衣秋杰, 等. 我国大型风电技术现状与展望[J]. 现代制造技术与装备, 2010(3): 1-3. WANG Fumao, GUO Xiaobin, YI Qiujie, et al. The status and prospect of large-scale wind power generation in China[J]. Modern Manufacturing Technology and Equipment, 2010(3): 1-3.
[6] 许郁, 朱永强. 并网风电场发电可靠性的新的评价指标[J]. 电气技术, 2010(6): 9-12. XU Yu, ZHU Yongqiang. New reliability indices of grid-connected wind farms[J]. Electrical Engineering, 2010(6): 9-12.
[7] 高忠旭, 毛安家, 陈得治,等. 风电场容量可信度及其若干影响因素分析[J]. 中国电力, 2013, 46(12): 95-99. GAO Zhongxu, MAO Anjia, CHEN Dezhi, et al. Analysis on the capacity credit of a wind farm and its influencing factors[J]. Electric Power, 2013, 46(12): 95-99.
[8] 申洪, 王伟胜. 一种评价风电场运行情况的新方法[J]. 中国电机工程学报, 2003, 23(9): 90-93. SHEN Hong, WANG Weisheng. A new method for evluating operation of wind power plant[J]. Proceedings of the CSEE, 2003, 23(9): 90-93.
[9] 解大, 康建洲. 崇明风力资源分析及风力机组的选择[J]. 电力系统保护与控制, 2009, 37(24): 65-70. XIE Da, KANG Jianzhou. Analysis of Chongming island wind power and selection of wind turbine unit[J]. Power System Protection and Control, 2009, 37(24): 65-70.
[10] 姚国平, 余岳峰, 王志征. 如东沿海地区风速数据分析及风力发电量计算[J]. 电力自动化设备, 2004, 24(4): 12-14. YAO Guoping, YU Yuefeng, WANG Zhizheng. Wind data analysis and wind power calculation[J]. Electric Power Atuomation Equipment, 2004, 24(4): 12-14.
[11] 于大洋, 韩学山, 梁军, 等. 基于NASA地球观测数据库的区域风电功率波动特性分析[J]. 电力系统自动化, 2011, 35(5): 77-81. YU Dayang, HAN Xueshan, LIANG Jun, et al. Study on the profiling of Chinas regional wind power fluctuation using GEOS-5 data assimilation system of National Aeronautics and Space Administration of America[J]. Automation of Electric Power Systems, 2011, 35(5): 77-81.
[12] 肖创英, 汪宁渤, 陟晶, 等. 甘肃酒泉风电出力特性分析[J]. 电力系统自动化, 2010, 34(17): 64-67. XIAO Chuangying, WANG Ningbo, ZHI Jing, et al. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 2010, 34(17): 64-67.
[13] 肖创英, 汪宁渤, 丁坤, 等. 甘肃酒泉风电功率调节方式的研究[J]. 中国电机工程学报, 2010, 30(10): 1-7. XIAO Chuangying, WANG Ningbo, DING Kun, et al. System power regulation scheme for Jiuquan Wind Power Base[J]. Proceedings of the CSEE, 2010, 30(10): 1-7.
[14] 辛颂旭, 白建华, 郭雁珩. 甘肃酒泉风电特性研究[J]. 能源技术经济, 2010, 22(12): 16-20. XIN Songxu, BAI Jianhua, GUO Yanyan. Study on wind power characteristics of Jiuquan Wind Power Base[J]. Energy Technology and Economics, 2010, 22(12): 16-20.
[15] 丁明, 吴义纯, 张立军. 风电场风速概率分布参数计算方法的研究[J]. 中国电机工程学报, 2005, 25(10): 107-110. DING Ming, WU Yichun, ZHANG Lijun. Study on the algorithm to the probabilistic distribution parameters of wind speed in wind farms[J]. Proceedings of the CSEE, 2005, 25(10): 107-110.
[16] 李剑楠, 乔颖, 鲁宗相, 等. 多时空尺度风电统计特性评价指标体系及其应用[J]. 中国电机工程学报, 2013, 33(13): 53-61. LI Jiannan, QIAO Ying, LU Zongxiang, et al. An evaluation index system for wind power statistical characteristics in multiple spatial and temporal scales and its application [J]. Proceedings of the CSEE, 2013, 33(13): 53-61.
[17] 李剑楠, 乔颖, 鲁宗相,等. 大规模风电多尺度出力波动性的统计建模研究[J]. 电力系统保护与控制, 2012, 40(19): 7-13. LI Jiannan, QIAO Ying, LU Zongxiang, et al. Research on statistical modeling of large-scale wind farms output fluctuations in different spacial and temporal scales[J]. Power System Protection and Control, 2012, 40(19): 7-13.
[18] 林卫星, 文劲宇, 艾小猛, 等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报, 2012, 32(1): 38-46. LIN Weixing, WEN Jinyu, AI Xiaomeng, et al. Probability density function of wind power variations[J]. Proceedings of the CSEE, 2012, 32(1): 38-46.
[19] Atmospheric Science Data Centre of NASA. Surface meteorology and solar energy(SSE)release 6.0 methodology[R/OL]. [2016-05-01]. http://eosweb.larc.nasa.gov/s-se/documents/SSE6Methodology.pdf.
[20] MANWELL J F, MCGOWAN J G, ROGERS A L. Wind energy explained: theory, design and application[M]. Chichester, U K: John Wiley & Sons Limited, 2002.
[21] GIPE P. Wind power: renewable energy for home, farm and business[M]. New York, U S A: Chelsea Green Publishing Company, 2004.
[22] 胡毅, 张健. 风资源评估中风速分布方法研究[J]. 内蒙古科技与经济, 2010(21): 76-78. HU Yi, ZHANG Jian. Research on wind speed distribution[J]. Inner Mongolia Science Technology & Economy, 2010(21): 76-78.
[23] 吴斌. 风力发电系统的功率变换与控制[M]. 北京: 机械工业出版社, 2012.
[24] 盛骤. 概率论与数理统计[M]. 北京: 高等教育出版社, 2009.
[25] 华锐风电网站. 产品与服务, 风机参数[EB/OL]. [2016-06-02]. http://www. sinovel.com/procducts.aspx?ID=67.
[1] 张玉玲,尹传环. 基于SVM的安卓恶意软件检测[J]. 山东大学学报(工学版), 2017, 47(1): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .
[2] 戴平,李宁*. 一种基于SVM的快速特征选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 60 -65 .
[3] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134 -139 .
[4] 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1 -7 .
[5] 尤鸣宇,陈燕,李国正. 不均衡问题中的特征选择新算法:Im-IG[J]. 山东大学学报(工学版), 2010, 40(5): 123 -128 .
[6] 吴国瑶,马立勇. 基于B样条FFD模型配准的虹膜图像融合方法[J]. 山东大学学报(工学版), 2010, 40(5): 24 -27 .
[7] 王兰忠, 孟文杰. 远程教育中视频感知加密算法[J]. 山东大学学报(工学版), 2015, 45(4): 40 -44 .
[8] 梁泽华,崔耀东,张雨. 有顺序依赖损耗的一维下料问题[J]. 山东大学学报(工学版), 2018, 48(3): 75 -80 .
[9] 孙静宇,余雪丽,陈俊杰, 李鲜花. 采样特异性因子及异常检测[J]. 山东大学学报(工学版), 2010, 40(5): 56 -59 .
[10] 程显毅1,2,朱倩2,管致紧1. 基于agent的模式表示模型AIM[J]. 山东大学学报(工学版), 2010, 40(5): 72 -76 .