山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (6): 27-33.
周咏梅1,杨佳能2,阳爱民2
ZHOU Yong-mei1, YANG Jia-neng2, YANG Ai-min1
摘要:
提出了构建基于HowNet和SentiWordNet的中文情感词典方法。将词语自动分解为多个义元后计算其情感倾向强度,并且使用词典校对方法对词语情感倾向强度进行优化。将所构建词典应用到文本情感分析任务中,使用支持向量机构建文本情感分类器进行实验。实验结果表明,该词典优于一般极性情感词典,为情感分析研究提供了有效的词典资源。
[1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[2] | 林江豪,周咏梅,阳爱民,陈锦. 基于词向量的领域情感词典构建[J]. 山东大学学报(工学版), 2018, 48(3): 40-47. |
[3] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[4] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[5] | 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26. |
[6] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[7] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[8] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
[9] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
[10] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
[11] | 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76. |
[12] | 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15-18. |
[13] | 周咏梅1,阳爱民1,林江豪2. 中文微博情感词典构建方法[J]. 山东大学学报(工学版), 2014, 44(3): 36-40. |
[14] | 卢玲1,王越2,杨武1. 一种基于朴素贝叶斯的中文评论情感分类方法研究[J]. 山东大学学报(工学版), 2013, 43(6): 7-11. |
[15] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
|