您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (6): 21-26.

• 机器学习与数据挖掘 • 上一篇    下一篇

变系数模型在医学纵向数据研究中的应用

方丽英,李爽,王普,陈培煜   

  • 收稿日期:2013-05-14 出版日期:2013-12-20 发布日期:2013-05-14
  • 作者简介:方丽英(1977- ),女,北京人,讲师,博士,主要研究方向为医学纵向数据建模与数据库应用.E-mail:fangliying@bjut.edu.cn
  • 基金资助:

    北京市委组织部优秀人才培养计划资助项目(2010D005015000001)

The application of varying coefficient model in the study of medical longitudinal data

FANG Li-ying, LI Shuang, WANG Pu, CHEN Pei-yu   

  1. College of Electronic Information and Control, Beijing University of Technology, Beijing 100124, China
  • Received:2013-05-14 Online:2013-12-20 Published:2013-05-14

摘要:

为了对医学纵向数据进行建模研究,利用变系数模型探索时变的检测指标与时变的肿瘤大小之间的映射关系,提出基于B样条估计与adaptiveLASSO惩罚最小二乘结合的两步迭代法进行系数估计与变量选择,该方法在系数估计的同时分离变系数、常系数和零系数。将变量选择方法应用于医学肿瘤数据中,对各个变量进行系数估计,研究不同时刻的症状对肿瘤大小进展的影响,并最终对肿瘤大小进行预测。平均相对误差的计算结果表明该模型模拟效果较好。

关键词: adaptive-LASSO惩罚, 系数估计, 变系数模型, 变量选择, 纵向数据, B样条

Abstract:

In order to study the medical longitudinal data modeling,the varying coefficient was used to explore the relationship between time-varying detection index and tumor size, and two-step iterative procedure based on basis expansion and adaptive-LASSO penalty least square method was proposed. This method could estimate the coefficient and meanwhile separate the variable coefficient, constant coefficient and zero coefficient. This method was applied to study the cancer data, to estimate the cofficient of each variable, to study the effect of symptom to the progression of tumor size in different time, and to predict the tumor size. The average relative error of model showed that the simulation effect was well.

Key words: adaptive-LASSO penalty, coefficient estimation, varying coefficient model, variable selection, longitudinal data, B-spline

[1] 吴国瑶,马立勇. 基于B样条FFD模型配准的虹膜图像融合方法[J]. 山东大学学报(工学版), 2010, 40(5): 24-27.
[2] 王海涛 赵东标 高素美. NURBS曲线实时插补中S型加减速算法的研究[J]. 山东大学学报(工学版), 2010, 40(1): 63-67.
[3] 李万军 赵东标 牛敏. 笔式加工轨迹的B样条曲线逼近[J]. 山东大学学报(工学版), 2010, 40(1): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!