您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (5): 29-33.doi: 10.6040/j.issn.1672-3961.0.2024.085

• 交通工程——智慧交通专题 • 上一篇    

基于AOD修正系数的网格化机动车排放清单

施庆利1,冯海霞2*,魏代梅1,王金萍1,李忠锐2   

  1. 1.山东省交通规划设计院集团有限公司, 山东 济南 250023;2.山东交通学院交通与物流工程学院, 山东 济南 250357
  • 发布日期:2024-10-18
  • 作者简介:施庆利(1985— ),男,山东菏泽人,高级经济师,硕士,主要研究方向为交通规划、交通运输经济. E-mail:qingly369@sina.com. *通信作者简介:冯海霞(1976— ),女,山东茌平人,副教授,硕士生导师,博士,主要研究方向为智能交通. E-mail:fhx76@163.com
  • 基金资助:
    国家自然科学基金资助项目(52102412);山东省自然科学基金资助项目(ZR2022MG077);山东省社会科学规划研究资助项目(23CKFJ16)

Grided vehicle emission inventory based on AOD mediation coefficient

SHI Qingli1, FENG Haixia2*, WEI Daimei1, WANG Jinping1, LI Zhongrui2   

  1. 1. Shandong Provincial Communications Planning and Design Institute Group Co., Ltd., Jinan 250023, Shandong, China;
    2. School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Published:2024-10-18

摘要: 为提高网格化排放清单精度,结合AOD(aerosol optical depth)和标准路长提出基于AOD修正系数的空间分配模型,并以青岛市为例进行验证。验证结果表明:基于AOD修正系数的空间分配模型获取的2019年青岛市1 km×1 km分辨率的PM2.5排放清单与测量数据的相关系数R2为0.55,高于基于标准路长、GDP(gross domestic product)和人口密度的空间分配模型(R2分别为0.47、0.43和0.31);青岛市中心城区,下辖的即墨、胶州、莱西、平度的中心城区及胶州湾地区是机动车的高排放区。本研究首次将强现实性的遥感数据引入空间分配模型,使每个网格的空间分配系数由固定值变为随真实大气污染状况变化的动态参数,提高了网格化机动车排放清单的精度,对研究机动车排放对大气污染的影响、精细化管控等具有重要意义。

关键词: 空间分配模型, 机动车, 网格化排放清单, AOD, PM2.5

中图分类号: 

  • U4
[1] 李振宇,廖凯,崔占伟,等. 缓解城市交通拥堵的CO2减排效益评估方法研究[J]. 交通运输系统工程与信息, 2020, 20(2): 8-12. LI Zhenyu, LIAO Kai, CUI Zhanwei, et al. An evaluation method of CO2 emissions reduction in urban traffic congestion mitigation[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 8-12.
[2] 冯海霞, 王兴渝, 咸化彩,等. 城市交通运行状况对机动车碳排放的影响研究[J]. 交通运输系统工程与信息, 2022, 22(4): 167-175. FENG H X, WANG X Y, XIAN H C, et al. Impact of urban traffic operations on vehicle carbon dioxide emission[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(4): 167-175.
[3] UN Environment. Global Environment Outlook 6 [EB/OL].(2019-03-04)[2024-01-25].https://www.unep.org/geo/ptbr/node/4.
[4] ZHENG B, HUO H, ZHANG Q, et al. A new vehicle emission inventory for China with high spatial and temporal resolution[J].Atmospheric Chemistry &Physics Discussions, 2013, 13(12): 32005-32052.
[5] ÁLAMOS N, HUNEEUS N, OPAZO M, et al. High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile[J]. Earth System Science Data, 2021, 14(1):361-379.
[6] FENG H X, NING E W, YU L, et al. The spatial and temporal disaggregation models of high-accuracy vehicle emission inventory[J]. Environment International, 2023, 181: 108287.
[7] FENG H X, WANG X Y, JIA Q, et al. A novel spatial disaggregation model of vehicle emission inventory[J]. Urban Climate, 2024, 55: 101947.
[8] EGGLESTON H S, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL].(2006-07-01)[2024-01-25]. https://www.osti.gov/etdeweb/biblio/20880391.
[9] 生态环境部. 道路机动车大气污染物排放清单编制技术指南(试行)[EB/OL].(2014-12-31)[2024-01-25]. https://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm.
[10] GÓMEZ C D, GONZALEZ C M, OSSES M, et al. Spatial and temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city. Comparison of GIS-based top-down methodologies[J]. Atmospheric Environment, 2018, 179: 142-155.
[11] 孙世达, 金嘉欣, 吕建华, 等. 基于精细化年均行驶里程建立机动车排放清单[J].中国环境科学, 2020, 40(5): 2018-2029. SUN Shida, JIN Jiaxin, LÜ Jianhua, et al. Developing vehicle emission inventory based on refined annual average vehicle kilometers travelled[J]. China Environmental Science, 2020, 40(5): 2018-2029.
[12] GONZALEZ C M, GOMEZ C D, ARISTIZABAL B H, et al. An algorithm for spatial and temporal disaggregation of on-road vehicle emission inventories[J]. Aerosol and Air Quality Research, 2020, 20(12): 2765-2779.
[13] 郑君瑜,车汶蔚,王兆礼. 基于交通流量和路网的区域机动车污染物排放量空间分配方法[J]. 环境科学学报, 2009, 29(4):815-821. ZHENG Junyu, CHE Wenwei, WANG Zhaoli. Traffic flow and road network-based spatial allocation of regional mobile source emission inventories[J]. Acta Scientiae Circumstantiae, 2009, 29(4): 815-821.
[14] CASTESANA P, RESQUIN M, HUNEEUS N, et al. PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information[J]. Earth System Science Data, 2022, 14(1): 271-293.
[15] JING B, WU L, MAO H J, et al. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing-Part 1: Development and evaluation of vehicle emission inventory[J]. Atmospheric Chemistry and Physics, 2016, 16(5): 3161-3170.
[16] SUN S, SUN L, LIU G, et al. Developing a vehicle emission inventory with high temporal-spatial resolution in Tianjin, China[J]. Science of the Total Environment, 2021, 776: 145873.
[17] FENG H X, LI J, FENG H Y, et al. A high-resolution index suitable for multi-pollutant monitoring in urban areas[J]. Science of the Total Environment, 2021, 772(6): 145428.
[18] CHEN C, LIANG J, XIE F, et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan Aarchipelago, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102711.
[19] SATHE Y, KULKARNI S, GUPTA P, et al. Application of moderate resolution imaging spectroradiometer(MODIS)aerosol optical depth(AOD)and weather research forecasting(WRF)model meteorological data for assessment of fine particulate matter(PM2.5)over India[J]. Atmospheric Pollution Research, 2019, 10(2): 418-434.
[20] 徐少才, 王静, 吴建会,等.青岛市PM2.5化学组分特征及综合来源解析[J].中国环境监测, 2018, 34(4): 44-53. XU Shaocai, WANG Jing, WU Jianhui, et al. Characterization of chemical composition and comprehensive source apportionment of PM2.5 in Qingdao[J]. Environmental Monitoring in China, 2018, 34(4): 44-53.
[21] 百度地图,2022年度中国城市交通报告[R]. 百度地图, 2023. https://jiaotong.baidu.com/reports/.
[1] 黄琦, 杨凌霄, 李岩岩, 姜盼, 高颖, 王文兴. 济南城区大气PM2.5、PM1.0的污染特征及大气传输[J]. 山东大学学报 (工学版), 2020, 50(1): 95-100.
[2] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[3] 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25.
[4] 杨凌霄,侯鲁健,吕波,王文兴,周学华,王哲,周杨,程淑会 . 济南市大气细颗粒物水溶性组分及大气传输的研究[J]. 山东大学学报(工学版), 2007, 37(4): 98-103 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!