您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (5): 1-28.doi: 10.6040/j.issn.1672-3961.0.2024.011

• 交通工程——智慧交通专题 •    

车-路协同下路面状态感知技术发展现状与展望

马涛,王仁智,陈丰*,宋一涛,李岳,马源   

  1. 东南大学交通学院, 江苏 南京 211189)
  • 发布日期:2024-10-18
  • 作者简介:马涛(1981— ),男,江苏徐州人,教授,博士生导师,博士,主要研究方向为智慧公路运维技术. E-mail:matao@seu.edu.cn. *通信作者简介:陈丰(1987—),男,湖北黄冈人,副研究员,博士生导师,博士,主要研究方向为智能道路铺装技术. E-mail:fengc@seu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金资助项目(52208430);江苏省自然科学基金资助项目(BK20210248)

Development status and prospects of pavement state sensing technology under vehicle-road interaction

MA Tao, WANG Renzhi, CHEN Feng*, SONG Yitao, LI Yue, MA Yuan   

  1. School of Transportation, Southeast University, Nanjing 211189, Jiangsu, China
  • Published:2024-10-18

摘要: 综述车路协同感知路面技术体系功能框架与物理架构并展望未来发展方向。基于基础设施的基本要求,系统描绘车路协同路面的功能框架,提出行驶安全辅助、导航路径规划、材料结构优化、智能养护决策4个具体功能;根据实现功能的数据类型需求,阐明涵盖状态感知、数据处理、数据传输、数据融合和能量供给等5个组成核心的技术体系架构。研究梳理该技术体系中关键的状态感知和数据分析技术,阐释相关技术原理、性能特点以及存在的问题,提出技术整体发展需求。综合功能框架技术需求,规划现有技术融合升级和新技术方向开辟2种途径,指明车路协同路面的未来发展方向。展望车路协同路面与其他智慧道路技术如无人驾驶路面、自愈合路面、自俘能路面等的有机融合,以实现车路协同路面的使用效能最大化,并助力未来智慧道路基础设施不断发展完善。

关键词: 道路工程, 车路协同, 路面状态, 传感技术, 数据分析方法

中图分类号: 

  • U411
[1] 中华人民共和国交通运输部. 交通运输部印发《指导意见》 推动交通运输领域新型基础设施建设[J]. 中国交通信息化,2020(9): 92. The Ministry of Transport issued the "Guiding Opinions" to promote the construction of new infrastructure in the field of transportation[J]. China Transportation Infor-matization, 2020(9): 92.
[2] LINBING W, 王含笑, 赵千, 等. 智能路面发展与展望[J]. 中国公路学报, 2019, 32(4):50-72. LINBING W, WANG Hanxiao, ZHAO Qian, et al. Development and prospects of intelligent pavement[J]. Journal of Chinese Highways, 2019, 32(4):50-72.
[3] 宋小金, 樊亮. 基于FWD的沥青路面动态弯沉温度修正系数[J]. 土木工程学报, 2018, 51(3): 123-128. SONG Xiaojin, FAN Liang. Dynamic deflection temperature correction coefficient of asphalt pavement based on FWD[J]. Chinese Journal of Civil Engineering, 2018, 51(3):123-128.
[4] 于华洋, 马涛, 王大为, 等. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. YU Huayang, MA Tao, WANG Dawei, et al. Review of academic research on pavement engineering in China·2020[J]. Journal of Chinese Highways, 2020, 33(10):1-66.
[5] 邓小伟. 浅谈弯板式动态称重系统[J]. 衡器, 2013, 42(9): 43-59. DENG Xiaowei. A brief discussion on the bent plate dynamic weighing system[J]. Weighing Instruments, 2013, 42(9): 43-59.
[6] 马晓辉. 基于光纤光栅高速公路动态称重系统研究[J]. 技术与市场, 2017, 24(11): 148. MA Xiaohui. Research on dynamic weighing system for highways based on fiber Bragg grating[J]. Technology and Market, 2017, 24(11):148.
[7] 罗晓光. 光纤光栅高速称重系统的研发[D]. 长沙: 中南大学, 2009. LUO Xiaoguang. Research and development of fiber Bragg grating high-speed weighing system[D]. Changsha: Central South University, 2009.
[8] 王强, 刘仰韶, 张文忠,等. 光纤高速汽车动态称重系统[J]. 长安大学学报(自然科学版), 2014, 34(3): 145-150. WANG Qiang, LIU Yangshao, ZHANG Wenzhong, et al. Optical fiber high-speed vehicle dynamic weighing system[J]. Journal of Chang'an University(Natural Science Edition), 2014, 34(3):145-150.
[9] 徐树山. 电容式车辆称重装置动态性能测试与分析[J]. 公路交通科技, 2008(9): 121-125. XU Shushan. Dynamic performance testing and analysis of capacitive vehicle weighing device[J]. Highway Transportation Technology, 2008(9): 121-125.
[10] 程路, 李青, 张宏建. 软质电容式车辆动态称重系统[J]. 哈尔滨工业大学学报, 2009, 41(8): 149-153. CHENG Lu, LI Qing, ZHANG Hongjian. Soft capacitive vehicle dynamic weighing system[J]. Journal of Harbin Institute of Technology, 2009, 41(8): 149-153.
[11] 程路, 李青, 张宏建. 基于软质电容式称重传感器的车辆动态称重系统[J]. 计量学报, 2008(4): 334-338. CHENG Lu, LI Qing, ZHANG Hongjian. Vehicle dynamic weighing system based on soft capacitive weighing sensor[J]. Chinese Journal of Metrology, 2008(4): 334-338.
[12] 何海浪. 压电式车辆动态称重传感器的设计与研究[D]. 杭州: 杭州电子科技大学, 2016. HE Hailang. Design and research of piezoelectric vehicle dynamic load cells[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2016.
[13] 李宝敏. 高速公路常用动态称重传感器比较[J]. 中国交通信息化, 2017(2): 131-132. LI Baomin. Comparison of commonly used dynamic load sensors on highways[J]. China Transportation Infor-matization, 2017(2): 131-132.
[14] 王荣旭. 基于压电传感器的车辆动态称重系统开发[D]. 济南: 山东大学, 2021. WANG Rongxu. Development of vehicle dynamic weighing system based on piezoelectric sensors[D]. Jinan: Shandong University, 2021.
[15] 赵千. 基于多传感器的路面动态称重系统研究[D]. 北京:北京科技大学, 2020. ZHAO Qian. Research on road dynamic weighing system based on multi-sensors[D]. Beijing: University of Science and Technology Beijing, 2020.
[16] 赵培杰. 基于压电石英传感器的高速动态称重系统设计[D]. 太原: 中北大学, 2018. ZHAO Peijie. Design of high-speed dynamic weighing system based on piezoelectric quartz sensor[D].Taiyuan: North China University, 2018.
[17] 沙占友. 智能温度传感器的发展趋势[J]. 电子技术应用, 2002(5): 6-7. SHA Zhanyou. Development trend of intelligent temperature sensors[J]. Electronic Technology Appli-cations, 2002(5): 6-7.
[18] 张妍, 苏煜飞. 温度传感器的研究和应用[J]. 现代制造技术与装备, 2016(5): 143-146. ZHANG Yan, SU Yufei. Research and application of temperature sensors[J]. Modern Manufacturing Technology and Equipment, 2016(5): 143-146.
[19] 谢清俊, 罗犟, 程爽. 接触式测温技术综述[J]. 中国仪器仪表, 2017(8): 48-53. XIE Qingjun, LUO Jiang, CHENG Shuang. Overview of contact temperature measurement technology[J]. China Instrumentation, 2017(8): 48-53.
[20] HORNY N. FPA camera standardisation[J]. Infrared Physics & Technology, 2003, 44(2): 109-119.
[21] 储呈敏, 马尚昌, 张素娟,等. 地表温度测量方法研究综述[J]. 电子设计工程, 2014, 22(6): 187-189. CHU Chengmin, MA Shangchang, ZHANG Sujuan, et al. Review of research on surface temperature measurement methods[J]. Electronic Design Engineering, 2014, 22(6): 187-189.
[22] 刘学琪, 杨万红. 基于红外热像仪的沥青路面温度监控措施[J]. 公路交通科技(应用技术版), 2016, 12(6): 102-104. LIU Xueqi, YANG Wanhong. Asphalt pavement temperature monitoring measures based on infrared thermal imaging camera[J]. Highway Transportation Technology(Applied Technology Edition), 2016, 12(6): 102-104.
[23] 朝鲁门. 气象卫星在地表温度反演及应用方面的综述[J]. 内蒙古科技与经济, 2015(10): 60-62. CHAO Lumen. A review of meteorological satellites in surface temperature retrieval and application[J]. Inner Mongolia Science and Technology and Economy, 2015(10): 60-62.
[24] 李宁, 黄树青, 顾卫,等. 红外热像仪在公路小气候监测中的应用[J]. 公路交通科技, 2006(9): 154-158. LI Ning, HUANG Shuqing, GU Wei, et al. Application of infrared thermal imaging cameras in highway microclimate monitoring[J]. Highway Transportation Science and Technology, 2006(9): 154-158.
[25] 李蕊, 牛生杰, 汪玲玲,等. 三种下垫面温度对比观测及结冰气象条件分析[J]. 气象, 2011, 37(3): 325-333. LI Rui, NIU Shengjie, WANG Lingling, et al. Comparative observations of three underlying surface temperatures and analysis of icing meteorological conditions[J]. Meteorology, 2011, 37(3): 325-333.
[26] 刘冰, 包国涛, 彭凯, 等. 基于Landsat TM影像不同地表温度反演算法的比较[J]. 地理信息世界, 2015, 22(3): 57-61. LIU Bing, BAO Guotao, PENG Kai, et al. Comparison of different surface temperature inversion algorithms based on Landsat TM images[J]. Geographic Information World, 2015, 22(3): 57-61.
[27] 孟丹, 李小娟, 宫辉力,等. 北京地区热力景观格局及典型城市景观的热环境效应[J]. 生态学报, 2010, 30(13): 3491-3500. MENG Dan, LI Xiaojuan, GONG Huili, et al. Thermal landscape pattern in Beijing and the thermal environmental effects of typical urban landscapes[J]. Acta Ecologica Sinica, 2010, 30(13): 3491-3500.
[28] 袁旭. 低空航拍近地温度研究[D]. 广州: 华南理工大学, 2013. YUAN Xu. Research on near-earth temperature in low-altitude aerial photography[D]. Guangzhou: South China University of Technology, 2013.
[29] 冯蕾, 张楷翊, 郜婧婧,等. 气象卫星遥感陆表温度产品在公路路面温度监测中的应用[J]. 科技导报, 2019, 37(20): 49-64. FENG Lei, ZHANG Kaiyi, GAO Jingjing, et al. Application of meteorological satellite remote sensing land surface temperature products in highway pavement temperature monitoring[J]. Science and Technology Herald, 2019, 37(20): 49-64.
[30] 孟瑜, 于兰, 王亚杰, 等. 光纤温度传感器的原理及应用研究[J]. 现代营销(信息版), 2020(5): 60-62. MENG Yu, YU Lan, WANG Yajie, et al. Research on the principle and application of optical fiber temperature sensors[J]. Modern Marketing(Information Edition), 2020(5): 60-62.
[31] HY T, LIU S Y, GUAN B, et al. Fiber Bragg grating sensors for structural and railway applications[C] //Advanced Sensor Systems and Applications II. Beijing, China: SPIE, 2005: 85-97.
[32] MIZUNAMI T, TATEHATA H, KAWASHIMA H, et al. High-sensitivity cryogenic fibre-Bragg-grating temperature sensors using Teflon substrates[J]. Measurement Science and Technology, 2001, 12(7): 914.
[33] 庞丹丹. 新型光纤光栅传感技术研究[D]. 济南: 山东大学, 2014. PANG Dandan. Research on new fiber grating sensing technology[D]. Jinan: Shandong University, 2014.
[34] SINGH A K, ZHU Y, HAN M, et al. Simultaneous load and temperature measurement using Lophine-coated fiber Bragg gratings[J]. Smart Materials & Structures, 2016, 25(11): 115019.
[35] JONSSON P. Remote sensor for winter road surface status detection[C] //Sensors, 2011 IEEE. Limerick, Ireland: IEEE, 2011: 1285-1288.
[36] CONSSON J, ROSENDAHL S,SJODAHL M, et al. Road condition analysis using NIR illumination and compensating for surrounding light[J]. Optics & Lasers in Engineering, 2016, 77: 175-182.
[37] JONSSON P. Road condition discrimination using weather data and camera images[C] //2011 14th International IEEE Conference on Intelligent Transportation Systems(ITSC). Washington, USA: IEEE, 2011: 1616-1621.
[38] JONSSON P. Classification of road conditions: from camera images and weather data[C] //2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications(CIMSA)Proceedings. Ottawa, Canada: IEEE, 2011: 1-6.
[39] JONSSON P. Surface status classification, utilizing image sensor technology and computer models[D]. Sweden: Mid Sweden University, 2015.
[40] 张久鹏, 王培, 葛敬勇,等. 基于红外技术的沥青路面积水结冰厚度测试方法与影响因素[J]. 东南大学学报(自然科学版), 2019, 49(6): 1187-1192. ZHANG Jiupeng, WANG Pei, GE Jingyong, et al. Testing method and influencing factors of water freezing thickness on asphalt road based on infrared technology[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1187-1192.
[41] YAMADA M, UEDA K, HORIBA I, et al. Discrimination of the road condition toward under-standing of vehicle driving environments[J]. IEEE Transaction on Intelligent Transportation System, 2001, 2(1): 26-31.
[42] JOKELA M, KUTILA M, LONG L. Road condition monitoring system based on a stereo camera[C] //2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca, Romania: IEEE, 2009: 423-428.
[43] COLACE L, SANTONI F, ASSANTO G. A near-infrared optoelectronic approach to detection of road conditions[J]. Optics & Lasers in Engineering, 2013, 51(5): 633-636.
[44] COLACE L, SANTONI F, ASSANTO G. Optical road-ice detector operating in the near infrared[J]. Electronics Letters, 2013, 49(5): 338-339.
[45] ARMAND O, PICCARD I, LORENZ O, et al. Optical detection of dangerous road conditions[J]. Sensors(Basel, Switzerland), 2019, 19(6): 1360.
[46] 顾昊, 李勃, 张潇, 等. 基于偏振测量的路面积水积冰检测方法[J]. 电子测量技术, 2011, 34(7): 4. GU Hao, LI Bo, ZHANG Xiao, et al. Detection method of road water and ice accumulation based on polarization measurement[J]. Electronic Measurement Technology, 2011, 34(7): 4.
[47] 苑会珍, 葛俊锋, 叶林,等. 基于线偏振度的非接触式路面状态探测方法[J]. 仪表技术与传感器, 2017(8): 4. YUAN Huizhen, GE Junfeng, YE Lin, et al. Non-contact pavement condition detection method based on linear polarization degree[J]. Instrument Technology and Sensors, 2017(8): 4.
[48] 刘红. 路面传感器系统中水膜传感器技术的研究[D].南京: 东南大学, 2012. LIU Hong. Research on water film sensor technology in road sensor system[D]. Nanjing: Southeast Univer-sity, 2012.
[49] 谭涛. 基于微电极水膜传感器的研究[D].南京: 南京信息工程大学, 2017. TAN Tao. Research on microelectrode water film sensor[D]. Nanjing: Nanjing University of Information Science and Technology, 2017.
[50] 王艳. 水膜厚度传感器的可靠性分析与应用[D]. 南京: 东南大学, 2016. WANG Yan. Reliability analysis and application of water film thickness sensor[D]. Nanjing: Southeast Univer-sity, 2016.
[51] 李薇, 叶林, 张杰, 等. 光纤式结冰传感器的试验研究[J]. 华中科技大学学报(自然科学版), 2009, 37(8): 16-18. LI Wei, YE Lin, ZHANG Jie, et al. Experimental study of optical fiber icing sensor[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2009, 37(8): 16-18.
[52] 但汉成, 刘扬, 凌桂香, 等. 光纤式结冰传感器探测沥青路面结冰过程[J]. 公路交通科技, 2014, 31(4): 7-15. DAN Hancheng, LIU Yang, LING Guixiang, et al. Detection of icing process on asphalt pavement using optical fiber icing sensor[J]. Highway Traffic Science and Technology, 2014, 31(4): 7-15.
[53] 叶林. 基于压电器件的冰传感器[J]. 仪表技术与传感器, 2001(9): 6-7. YE Lin. Ice sensor based on piezoelectric devices[J]. Instrument Technology and Sensors, 2001(9): 6-7.
[54] 张杰, 王敏, 张洪, 等. 谐振平膜型结冰传感器的智能温度补偿[J]. 计量与测试技术, 2005(8): 4-5. ZHANG Jie, WANG Min, ZHANG Hong, et al. Intelligent temperature compensation of resonant flat film icing sensor[J]. Measurement and Testing Technology, 2005(8): 4-5.
[55] 谭舒亚. 路面结冰检测技术的研究[D]. 武汉: 华中科技大学, 2015. TAN Shuya. Research on road ice detection technology[D]. Wuhan: Huazhong University of Science and Technology, 2015.
[56] 舒俊. 谐振式路面状态传感器研究与试验[D]. 武汉: 华中科技大学, 2017. SHU Jun. Research and experiment on resonant road condition sensor[D]. Wuhan: Huazhong University of Science and Technology, 2017.
[57] OWUSU K P, KUHN D C S, BIBEAU E L. Capacitive probe for ice detection and accretion rate measurement:proof of concept[J]. Renewable Energy, 2013, 50: 196-205.
[58] ARTEMOV V G, VOLKOV A A. Water andice dielectric spectra scaling at 0 ℃[J]. Ferroelectrics, 2014, 466(1): 158-165.
[59] 崔丽琴. 基于CAV444的电容式冰厚传感器及其检测系统的研究[D]. 太原: 太原理工大学, 2010. CUI Liqin. Research on capacitive ice thickness sensor and its detection system based on CAV444[D]. Taiyuan: Taiyuan University of Technology, 2010.
[60] FELSBERGER R, SCHWEIGHOFER B, FLATSCHER M, et al. Low power ice detection with capacitive and impedance spectroscopy-based measurements[C] //2018 IEEE 27th international symposium on industrial electronics(ISIE). Cairns, Australia: IEEE, 2018: 809-813.
[61] FLATSCHER M, NEUMAYER M, BRETTERKL-IEBER T. Field sensor analysis for electrical impedance spectroscopy based ice detection[C] //2017 IEEE Sensors. Glasgow, UK: IEEE, 2017: 1-3.
[62] NEUMAYER M, BRETTERKLIEBER T, FLATSCHER M, et al. Signal processing for capacitive ice sensing: electrode topology and algorithm design[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(5): 1458-1466.
[63] 郎洪, 陆键, 陈圣迪,等. 考虑病害三维特征的沥青路面车辙异常检验方法[J]. 东南大学学报(自然科学版), 2020, 50(3): 9. LANG Hong, LU Jian, CHEN Shengdi, et al. Asphalt pavement rutting abnormality detection method considering three-dimensional characteristics of disease[J]. Journal of Southeast University(Natural Science Edition), 2020, 50(3): 9.
[64] 陈小宇, 雷波. 一种快速鲁棒的车辙检测方法[J]. 应用科学学报, 2013, 31(5): 512-518. CHEN Xiaoyu, LEI Bo. A fast and robust rut detection method[J]. Journal of Applied Science, 2013, 31(5): 512-518.
[65] LUO W, LIU L, LI L. Measuring rutting dimension and lateral position using 3D line scanning laser and inertial measuring unit[J]. Automation in Construction, 2020, 111: 103056.
[66] 谭忆秋, 肖神清, 熊学堂. 路面抗滑性能检测与预估方法综述[J]. 交通运输工程学报, 2021, 21(4): 32-47. TAN Yiqiu, XIAO Shenqing, XIONG Xuetang. Review of pavement anti-skid performance detection and prediction methods[J]. Journal of Transportation Engineering, 2021, 21(4): 32-47.
[67] WANG Y, LAI X, ZHOU F, et al. Evaluation ofpavement skid resistance using surface three-dimensional texture data[J]. Coatings, 2020, 10(2): 162.
[68] WANG Y, YU B, ZHANG X, et al. Automatic extraction and evaluation of pavement three-dimensional surface texture using laser scanning technology[J]. Automation in Construction, 2022, 141: 104410.
[69] SHI W, NIU D, LI Z, et al. Effective contact texture region aware pavement skid resistance prediction via convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2023,39(13): 2054-2070.
[70] LENG B, JIN D, XIONG L, et al. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion[J]. Mechanical Systems and Signal Processing, 2021, 150: 107275.
[71] ZHAO Y Q, LI H Q, LIN F, et al. Estimation of road friction coefficient in different road conditions based on vehicle braking dynamics[J]. Chinese Journal of Mechanical Engineering, 2017, 30: 982-990.
[72] ZHAO W, ZHANG J, LAI J, et al. Skid resistance of cement concrete pavement in highway tunnel: a review[J]. Construction and Building Materials, 2023, 406: 133235.
[73] 高英达. 基于机载激光雷达的路面车辙和平整度检测技术研究[D]. 南京: 东南大学, 2022. GAO Yingda. Research on road rutting and flatness detection technology based on airborne lidar[D]. Nanjing: South Earth University, 2022.
[74] HAN J, XIONG G, LIU J. Detection and analysis of pavement sections based on laser displacement sensor[J]. Sensors, 2023, 23(15): 6758.
[75] LI Peigen, HU Guizhang, XIA Haiting, et al. Efficient method based on recurrent neural networks for pavement evenness detection[J]. Measurement, 2023, 212: 112676.
[76] XU J, YU X. Pavement roughness grade recognition based on one-dimensional residual convolutional neural network[J]. Sensors, 2023, 23(4): 2271.
[77] 刘德明, 孙琪真. 分布式光纤传感技术及其应用[J]. 激光与光电子学进展, 2009, 46(11): 29-33. LIU Deming, SUN Qizhen. Distributed optical fiber sensing technology and its applications[J]. Progress in Lasers and Optoelectronics, 2009, 46(11): 29-33.
[78] MA X, WANG T, DONG Z. Dynamicresponse monitoring and analysis of In-Service asphalt pavement based on FBG measuring technology[C] //Accelerated Pavement Testing to Transport Infrastructure Innovation: Proceedings of 6th APT Conference. Sydney, Australia:Springer International Publishing, 2020: 536-544.
[79] 谭忆秋, 王海朋, 马韶军, 等. 基于光纤光栅传感技术的沥青路面压实监测[J]. 中国公路学报, 2014, 27(5): 112-117. TAN Yiqiu, WANG Haipeng, MA Shaojun, et al. Asphalt pavement compaction monitoring based on fiber grating sensing technology[J]. Journal of Chinese Highways, 2014, 27(5): 112-117.
[80] CAMPANELLA C, CUCCOVILLO A, CAMPANELLA C, et al. Fibre Bragg grating based strain sensors: review of technology and applications[J]. Sensors, 2018, 18(9): 3115.
[81] 张锦龙, 王拥军, 田凤, 等. 光纤传感的后起之秀——分布式传感[J]. 南京信息工程大学学报(自然科学版), 2017, 9(2): 174-178. ZHANG Jinlong, WANG Yongjun, TIAN Feng, et al. The rising star of optical fiber sensing: distributed sensing[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2017, 9(2): 174-178.
[82] SUHARTOMO A, SIMATUPANG J W, WIDJAJA B, et al. Feasibility study on structural health monitoring systems using fiber-optic sensors(FOS)technology for transportation infrastructures in Indonesia[J]. IOP Conference Series: Materials Science and Engineering, 2019, 494: 012054.
[83] CHAPELEAU X, BLANC J, HORNYCH P, et al. Use of distributed fiber optic sensors to detect damage in a pavement[C] //Proceedings of the 7th European Workshop on Structural Health Monitoring. Nantes, France: Taylor & Francis Group, 2014: 8-11.
[84] 陈鑫. 季冻区路基冻胀融沉控制指标研究[D]. 长春: 吉林大学, 2018. CHEN Xin. Research on control indicators of frost heave and thaw settlement of roadbed in seasonally frozen areas[D]. Changchun: Jilin University, 2018.
[85] 江涛. 银西高铁甘宁段水泥改良黄土路基冻胀规律及冻胀防治效果评价[J]. 铁道标准设计, 2021, 65(9): 8-17. JIANG Tao. Frost heave pattern and frost heave prevention effect evaluation of cement-improved loess subgrade in theganning section of the Yinxi High-speed Railway[J]. Railway Standard Design, 2021, 65(9): 8-17.
[86] 孙英潮, 闫宏业, 蔡德钩, 等. 高速铁路路基冻胀综合监测体系研究[J]. 铁道建筑, 2015(6): 92-95. SUN Yingchao, YAN Hongye, CAI Degou, et al. Research on comprehensive monitoring system for high-speed railway subgrade frost heave[J]. Railway Construction, 2015(6): 92-95.
[87] CAMPANELLA C E, CUCCOVILLO A, CAMPAN-ELLA C, et al. Fibre Bragg grating based strain sensors: review of technology and applications[J]. Sensors, 2018, 18(9): 3115.
[88] OU R, LUO L, SOGA K. Distributed fiber optic strain sensing for crack detection with Brillouin shift spectrum back analysis[J]. Structural Health Monitoring, 2024, 23(4): 2636-2649.
[89] 王博实. 基于FBG的路基不均匀沉降监测传感器应用研究[D]. 大连: 大连理工大学, 2016. WANG Boshi. Research on application of FBG-based uneven settlement monitoring sensor for roadbed[D]. Dalian: Dalian University of Technology, 2016.
[90] GAO S, ZENG Q, JIAO J, et al. Areview on persistent scatterer interferometric synthetic aperture radar[J]. Remote Sensing Technology and Application, 2016, 31(1): 86-94.
[91] 尼露帕尔·阿迪力. 集成ESMD和STL的PS序列交通基础设施季节性形变监测研究[D]. 北京: 北京建筑大学, 2023. NILUPAL Adili. Research on seasonal deformation monitoring of PS sequence transportation infrastructure integrating ESMD and STL[D]. Beijing: Beijing Jianzhu University, 2023.
[92] SUN B C, QIU Y J, LIANG S Q. Cracking recognition of pavement surface based on wavelet technology[J]. Journal of Chongqing Jiaotong University(Natural Science), 2010, 29(1): 69-72.
[93] HOANG N D, NGUYEN Q L. Fastlocal laplacian-based steerable and sobel filters integrated with adaptive boosting classification tree for automatic recognition of asphalt pavement cracks[J]. Advances in Civil Engineering, 2018, 2018: 1-17.
[94] 王博. 基于MATLAB图像处理的水泥路面裂缝检测研究[J]. 商洛学院学报, 2014, 28(4):42-45. WANG Bo. A study on cement pavement crack detection based on MATLAB image processing[J]. Journal of Shangluo University, 2014, 28(4):42-45.
[95] LI J, YANG Z, LI W. Design and implementation of pavement crack detection system based on FPGA[C] //The 27th Chinese Control and Decision Conference(2015 CCDC). Qingdao, China: IEEE, 2015: 5936-5941.
[96] RONGGUI M A, KUN X U, LIU F. Highway surface crack image identifying algorithm[J]. Journal of Transport Information and Safety, 2014(2): 90-94.
[97] 刘娜, 宋伟东, 赵泉华. 形态学和最大熵图像分割的城市路面裂缝检测[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(1): 5. LIU Na, SONG Weidong, ZHAO Quanhua. Urban pavement crack detection using morphology and maximum entropy image segmentation[J]. Journal of Liaoning University of Engineering and Technology(Natural Science Edition), 2015, 34(1): 5.
[98] ZHU Qingbo. Pavement crack detection algorithm based on image processing analysis[C] //2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC). Hangzhou, China: IEEE, 2016, 1: 15-18.
[99] LI Y Y, HUANG Q Y, HOU Z X. Improve of OSTU based on hough transformation and applied in pavement crack detection[J]. Electronic Design Engineering, 2016, 24(5): 43-46.
[100] TALAB A, HUANG Z, XI F, et al. Detection crack in image using OTSU method and multiple filtering in image processing techniques[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(3): 1030-1033.
[101] QIU L Y. An algorithm of pavement crack detection based on edge detection[J]. Journal of Yancheng Institute of Technology(Natural Science Edition), 2015, 28(3): 37-43.
[102] HAN K, HAN H. Pavement crack detection method based on region-level and pixel-level features[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1178-1186.
[103] LUO Y Z. Asphalt pavement crack detection based on image local mean standard deviation algorithm[J]. Geomatics & Spatial Information Technology, 2017, 40(12): 167-170.
[104] BALBIN J R, HORTINELA IV C C, GARCIA R G, et al. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms[C] //Second International Workshop on Pattern Recognition. Singapore: SPIE, 2017, 10443: 40-44.
[105] 狄亚平. 路面裂缝识别算法研究[D]. 郑州: 郑州大学, 2018. DI Yaping. Research on pavement crack identification algorithm[D]. Zhengzhou: Zhengzhou University, 2018.
[106] 刘杨. 基于图像处理的路面裂缝检测系统研究[D].桂林:桂林电子科技大学, 2017. LIU Yang. Research on pavement crack detection system based on image processing[D]. Guilin: Guilin University of Electronic Science and Technology, 2017.
[107] LI W. Improved gray correction algorithm for preprocessing pavement crack[J]. Computer Systems & Applications, 2015, 24(2): 220-223.
[108] SHUAI L I, HOU D, GAO J, et al. Research on preprocessing method of pavement crack image via mathematical morphology[J]. Highway Engineering, 2018, 43(2):270-274.
[109] 常磊. 基于时空关联的路网数据分析与交通发展态势预测[D]. 济南: 山东理工大学,2023. CHANG Lei. Road network data analysis and traffic development situation prediction based on spatio-temporal correlation[D]. Jinan: Shandong University of Science and Technology, 2023.
[110] 舒斯, 熊守权, 陈英英,等. 湖北省高速公路道路结冰预警模型[J]. 气象, 2019, 45(11): 11. SHU Si, XIONG Shouquan, CHEN Yingying, et al. Highway icing warning model in Hubei Province[J]. Meteorology, 2019, 45(11): 11.
[111] 白永清, 陈城, 何明琼. 利用Logistic回归方法的高速桥(路)面结冰风险等级预警模型[J]. 气象科技, 2016, 44(2): 5. BAI Yongqing, CHEN Cheng, HE Mingqiong. High-speed bridge(road)surface icing risk level early warning model using logistic regression method[J]. Meteorological Science and Technology, 2016, 44(2): 5.
[112] HOANG N D, NGUYEN Q L. Automatic recognition of asphalt pavement cracks based on image processing and machine learning approaches: a comparative study on classifier performance[J]. Mathematical Problems in Engineering, 2018, 2018(1): 6290498.
[113] MEGAN R, MICHAELI P, HARRY T. Using support vector machines to predict the probability of pavement failure[J]. Proceedings of the Institution of Civil Engineers Transport, 2015, 168(3): 212-222.
[114] 董天翔. 江苏省高速路网道路低温时空分布及预警模型对比研究[D]. 南京: 南京信息工程大学, 2018. DONG Tianxiang. Comparative study on the spatial and temporal distribution of low temperature and early warning models on Jiangsu Province's highway network[D]. Nanjing: Nanjing University of Information Science and Technology, 2018.
[115] 刘建华. 基于最小二乘支持向量机的机场道面积冰厚度预测[D]. 天津: 中国民航大学, 2020. LIU Jianhua. Prediction of airport runway ice thickness based on least squares support vector machine[D]. Tianjin: Civil Aviation University of China, 2020.
[116] CORTES C, MOHRI M, ROSTAMIZADEH A. Generalization bounds for learning kernels[C] //27th International Conference on Machine Learning. Haifa, Israel: ICML, 2010: 247-254.
[117] 季天剑, 黄晓明, 刘清泉, 等. 沥青路面表面水膜厚度试验[J]. 公路交通科技, 2004(12): 14-17. JI Tianjian, HUANG Xiaoming, LIU Qingquan, et al. Test of water film thickness on asphalt pavement surface[J]. Highway Traffic Science and Technology, 2004(12): 14-17.
[118] 季天剑, 黄晓明, 刘清泉, 等. 道路表面水膜厚度预测模型[J]. 交通运输工程学报, 2004(3): 1-3. JI Tianjian, HUANG Xiaoming, LIU Qingquan, et al. Prediction model of water film thickness on road surface[J]. Journal of Transportation Engineering, 2004(3): 1-3.
[119] 翟登攀, 张熙颖. 基于BP神经网络的道路预防性养护决策研究[J]. 交通科技与经济, 2020, 22(5): 63-66. ZHAI Dengpan, ZHANG Xiying. Research on road preventive maintenance decision-making based on BP neural network[J]. Transportation Science and Technology and Economics, 2020, 22(5): 63-66.
[120] KIM Y, MALLICK R, BHOWMICK S, et al. Nonlinear system identification of large-scale smart pavement systems[J]. Expert Systems with Applications, 2013, 40(9): 3551-3560.
[121] 赵丽平, 贺洁颖, 于小红, 等. 山西省冬季降水与高速公路路面结冰预报技术研究[C] //第34届中国气象学会年会 S7 水文气象、地质灾害气象预报理论与应用技术论文集. 郑州, 中国:中国气象出版社, 2017:6.
[122] 陈凯, 徐国庆, 熊焘, 等. 基于C4.5决策树算法的道路结冰预报模型构建与应用[J]. 交通运输研究, 2018, 4(1): 57-62. CHEN Kai, XU Guoqing, XIONG Tao, et al. Construction and application of road icing prediction model based on C4.5 decision tree algorithm[J]. Transportation Research, 2018, 4(1): 57-62.
[123] 武万里, 缑晓辉, 刘垚. 基于GIS的高速公路道路结冰风险分析与评价[J]. 华北自然资源, 2021(2): 134-136. WU Wanli, GOU Xiaohui, LIU Yao. Analysis and evaluation of highway icing risk based on GIS[J]. North China Natural Resources, 2021(2): 134-136.
[124] 汤筠筠, 郭忠印, 李长城, 等. 基于路面摩擦因数的冬季典型路面状态识别模型[J]. 中国公路学报, 2014, 27(11): 25-30. TANG Yunyun, GUO Zhongyin, LI Changcheng, et al. Identification model of typical road conditions in winter based on pavement friction factors[J]. Journal of Chinese Highways, 2014, 27(11): 25-30.
[125] JIA L. The Extractionmethod of pavement crack edge based on automatic threshold detection and edge connection[J]. Shanxi Science & Technology of Communications, 2015(5): 21-24.
[126] QI Huaichao, XIAO Fei, BAO Xiongwei. Improvement of edge detection discontinuity in pavement crack recognition[J]. Electronic Design Engineering, 2014, 22(1):32-34.
[127] XU A H, GAO J. Crack identification method for cement pavement based on image enhancement and mathematical morphology[J]. Highway, 2015, 25(10): 55-58.
[128] 王盼盼. 基于改进灰度分割算法的路面裂缝识别研究[D]. 西安: 长安大学, 2014. WANG Panpan. Research on pavement crack identification based on improved grayscale segmentation algorithm[D]. Xi'an: Chang'an University, 2014.
[129] ZHANG H, MENG H, LIU T Z. Analysis on the image edge detection algorithm of asphalt pavement crack[J]. Northern Communications, 2015(3): 56-59.
[130] XIN W, FENG D, LI W. Research & implementation of pavement crack detection algorithm[J]. Journal of North China Institute of Aerospace Engineering, 2017, 27(5): 9-10.
[131] SHENG L. Method of shadow pavement crack extraction based on improved local threshold segmentation[J]. Wireless Internet Technology, 2018, 15(20): 112-113.
[132] HUAN X U, ZHEN-BI L I, JIANG Y Y, et al. Pavement crack detection based on OpenCV and improvedcanny operator[J]. Computer Engineering and Design, 2014, 35(12): 4254-4258.
[133] 张红. 基于图像处理的路面裂缝检测系统研究[D]. 沈阳: 沈阳航空航天大学, 2018. ZHANG Hong. Research on pavement crack detection system based on image processing[D]. Shenyang: Shenyang University of Aeronautics and Astron-autics, 2018.
[134] HOANG N D, NGUYEN Q L, TIEN B D. Image processing-based classification of asphalt pavement cracks using support vector machine optimized by artificial bee colony[J]. Journal of Computing in Civil Engineering, 2018, 32(5): 04018037.
[135] PAN Y, ZHANG X, CERVONE G, et al. Detection of asphalt pavement potholes and cracks based on unmanned aerial vehicle(UAV)multispectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3701-3712.
[136] NAGAHARA H, UMEDA K, YAMASHITA A, et al. A method based on machine learning using hand-crafted features for crack detection from asphalt pavement surface images[C] //Thirteenth International Conference on Quality Control by Artificial Vision 2017. Tokyo, Japan: SPIE, 2017, 10338: 117-124.
[137] BANHARNSAKUN A. Hybrid ABC ANN for pavement surface distress detection and classification[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2): 699-710.
[138] HAFEZ M, KSAIBATI K, ATADERO R A. Optimizing expert-based decision-making of pavement maintenance using artificial neural networks with pattern recognition algorithms[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(11): 90-100.
[139] YAO S, ZHAO Y, ZHANG A, et al. Deep learning for the internet of things[J]. Computer, 2018, 51(5): 32-41.
[140] BUTT F A, CHATTHA J N, AHMAD J, et al. On theintegration of enabling wireless technologies and sensor fusion for next-generation connected and autonomous vehicles[J]. IEEE Access, 2022, 10: 14643-14668.
[141] GHAHRAMANI Z. Probabilistic machine learning and artificial intelligence[J]. Nature, 2015, 521(7553): 452-459.
[142] RAFIEI M H, ADELI H. A novel unsupervised deep learning model for global and local health condition assessment of structures[J]. Engineering Structures, 2018, 156: 598-607.
[143] HYUN K, TOK A, RITCHIE S G. Long distance truck tracking from advanced point detectors using a selective weighted Bayesian model[J]. Transportation Research Part C: Emerging Technologies, 2017, 82: 24-42.
[144] ZHAO L, LI F, SUN D, et al. Highway traffic crash risk prediction method considering temporal correlation characteristics[J]. Journal of Advanced Transpor-tation, 2023, 2023(1): 9695433.
[145] GRANDE Z, CASTILLO E, MORA E, et al. Highway androad probabilistic safety assessment based on Bayesian network models[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 379-396.
[146] ZOU H, ZHU S, JIANG R, et al. Traffic conflicts in the lane-switching sections at highway reconstruction zones[J]. Journal of Safety Research, 2022, 84: 280-289.
[147] SONG Y, DENG Y. A new method to measure the divergence in evidential sensor data fusion[J]. International Journal of Distributed Sensor Networks, 2019, 15(4): 1550147719841295.
[148] LI H, BAO Y, OU J. Structural damage identification based on integration of information fusion and shannon entropy[J]. Mechanical Systems and Signal Pro-cessing, 2008, 22(6): 1427-1440.
[149] TORRES BLANC C, CUBILLO S, HERNANDEZ VARELA P. New negations on the membership functions of type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2018, 27(7): 1397-1406.
[150] SHUANGHU Q, YUNSHENG F, GUOFENG W, et al.Multi sensor data fusion method based on improved evidence theory[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1142.
[151] WANG P W, YU H B, XIAO L, et al. Online traffic condition evaluation method for connected vehicles based on multisource data fusion[J]. Journal of Sensors, 2017, 2017(1): 7248189.
[152] FERNANDO C G, CORNEJO M E, JESUS M. Decision making in fuzzy rough set theory[J]. Mathematics, 2023, 11(19): 4187.
[153] YING C, JIUHONG Z, YANFENG L, et al. Analysis of bridge health detection based on data fusion[J]. Advances in Civil Engineering, 2022, 2022(1): 6893160.
[154] ALBERT B, ANTHONY S, NANA KENA F, et al. Predictive maintenance model based onmultisensor data fusion of hybrid fuzzy rough set theory feature selection and stacked ensemble for fault classification[J]. Mathematical Problems in Engineering, 2022, 2022(1): 4372567.
[155] ZHANG P, LI T, WANG G, et al. Multi source information fusion based on rough set theory: a review[J]. Information Fusion, 2020, 68: 85-117.
[156] BERGENSTRAHLE L, HE B, BERGENSTRAHLE J, et al. Super-resolved spatial transcriptomics by deep data fusion[J]. Nature Biotechnology, 2022, 40(4): 476-479.
[157] ZHANG L, WANG Z, QU C, et al. Research on hybrid fusion algorithm for multi-feature among heterogeneous image[J]. Infrared Physics & Technology, 2020, 104: 103110.
[158] DOWNEY A, UBERTINI F, LAFLAMME S. Algorithm for damage det
[1] 马川义,冯豪杰,蒋红光,侯天新,姚占勇,杨为民. 吸水土工布对路基湿度控制效果的数值模拟[J]. 山东大学学报 (工学版), 2024, 54(4): 141-149.
[2] 宋修广, 赵涛, 毕研美, 张紫豪, 杜聪, 田源, 孔晓光. 光纤传感技术在道路交通中的应用[J]. 山东大学学报 (工学版), 2024, 54(2): 13-26.
[3] 姚玉权,黄伯承,宋亮,张建,仰建岗,高杰. 多来源RAP下RHMA材料组成的动态控制策略[J]. 山东大学学报 (工学版), 2022, 52(6): 79-88.
[4] 吴建清,宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报 (工学版), 2020, 50(4): 52-69.
[5] 李萌,纪少波,王豪,廖宝梁,韩文扬,韦金城,廉静,葛智. 路面层间应变信号的预处理方法[J]. 山东大学学报 (工学版), 2019, 49(3): 73-79.
[6] 蒋树磊,杨世锋,杨令航,师文明,邹福清,单青红. 城市快速路小间距并行高铁深塘跨越技术[J]. 山东大学学报 (工学版), 2019, 49(1): 91-100.
[7] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[8] 郭德栋,张圣涛,李晋,张龙,张习斌. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52.
[9] 崔新壮,黄丹,刘磊,蓝日彦,吕海波,赵艳林,曹卫东,常成利. 沥青路面病害力学研究进展[J]. 山东大学学报(工学版), 2016, 46(5): 68-87.
[10] 姚占勇,张昊,商庆森,宫本辉,刘志杭,王旭刚. 可溶盐作用下水泥稳定花岗岩风化料特性[J]. 山东大学学报(工学版), 2016, 46(2): 85-93.
[11] 郭德栋1,2,沙爱民3. 基于微波与磁铁耦合发热效应的融雪除冰技术[J]. 山东大学学报(工学版), 2012, 42(4): 92-97.
[12] 陈瑜,高英力. 公路面层脱硫石膏—粉煤灰混凝土试验研究与应用[J]. 山东大学学报(工学版), 2010, 40(6): 72-75.
[13] 姚占勇 田腾辉. 不同轮压分布形式对半刚性路面结构力学响应的有限元分析[J]. 山东大学学报(工学版), 2009, 39(6): 105-110.
[14] 崔新壮,金青 . 轮载作用下饱水沥青路面的动力响应[J]. 山东大学学报(工学版), 2008, 38(5): 19-24 .
[15] 崔新壮,商庆森,姚占勇 . 强夯在威乳高速公路改建工程中的应用研究及一般性推广[J]. 山东大学学报(工学版), 2008, 38(4): 53-56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!