山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 121-127.doi: 10.6040/j.issn.1672-3961.0.2024.077
• 土木工程 • 上一篇
韩璐1,周爱平1,孙柯2,万田涛2,隋高阳3,葛智2,张洪智2*
HAN Lu1, ZHOU Aiping1, SUN Ke2, WAN Tiantao2, SUI Gaoyang3, GE Zhi2, ZHANG Hongzhi2*
摘要: 为研究黄河泥沙对水泥材料性能的影响,采用黄河泥沙部分替代水泥制备砂浆,研究泥沙质量分数对砂浆流动度、凝结时间、力学性能的影响,并通过微观试验分析泥沙对水泥水化过程、水化产物和微观结构的影响。结果表明:泥沙的掺入导致浆体凝结时间缩短、流动性降低,其28 d活性指数为66.5%,主要发挥物理填充作用贡献基体强度;泥沙中CaCO3为水泥水化提供成核位点,加速水泥早期水化进程;CaCO3与C3A发生反应,生成单碳酸盐(monocarbonate, MC),Ca(OH)2参与上述反应,生成半碳酸盐(hemicarbonate, HC),抑制钙矾石(ettringite, AFt)向单硫型硫铝酸钙(monosulphate, AFm)转变。
中图分类号:
| [1] 魏艳红,贾晓鹏,王远征,等. 近70年黄河上游干流水沙时空变化与周期特征[J/OL]. 水土保持学报, 2025. https://doi.org/10.13870/j.cnki.stbcxb.2025.04.010 WEI Yanhong, JIA Xiaopeng, WANG Yuanzheng, et al. Spatiotemporal variations and periodic characteristics of runoff and sediment discharge in the upper mainstream of the Yellow River over the past 70 years[J/OL].Journal of Soil and Water Conservation,2025. https://doi.org/10.13870/j.cnki.stbcxb.2025.04.010 [2] 王远见, 马颖卓, 李卢祎, 等. 黄河泥沙之变——水库清淤与泥沙资源利用探究[J]. 中国水利, 2023(9): 4-11. WANG Yuanjian, MA Yingzhuo, LI Luyi, et al. The change of sediment in the Yellow River:research on reservoir desilting and sediment resource utilization[J].China Water Conservancy, 2023(9): 4-11. [3] 刘慧, 柴枭雄, 李长明, 等. 黄河泥沙物化特性与改性利用研究进展[J]. 人民黄河, 2023, 45(5): 41-45. LIU Hui, CHAI Xiaoxiong, LI Changming, et al. Research progress of physical-chemical characteristics and modification utilization of sediment in Yellow River[J]. Yellow River, 2023, 45(5): 41-45. [4] 石华伟, 李昆鹏, 王远见. 黄河泥沙资源利用方向研究进展[C] //中国水利学会2020学术年会论文集第三分册. 北京: 中国水利学会,黄河水利委员会,2020. SHI Huawei, LI Kunpeng, WANG Yuanjian. Research progress on the utilization direction of sediment resources in the Yellow River[C] //Volume 3 of the proceedings of the 2020 academic annual meeting of the Chinese hydraulic society. Beijing: China Water Conservancy Society, Yellow River Water Conservancy Commission, 2020. [5] 关超. 黄河泥沙塑性混凝土性能试验设计[D]. 郑州: 郑州大学, 2014. GUAN Chao. Experimental study on behavior of plastic concrete with Yellow River sediment[D]. Zhengzhou: Zhengzhou University, 2014. [6] 张廷毅, 汪自力, 朱海堂, 等. 黄河特细砂塑性混凝土渗透性能[J]. 四川大学学报(工程科学版), 2015, 47(4): 69-75. ZHANG Tingyi, WANG Zili, ZHU Haitang, et al. Permeability of Yellow River superfine sand plastic concrete[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(4): 69-75. [7] LI G N, WANG B M, LIU H, et al. Mechanical property and microstructure of alkali-activated Yellow River sediment-coal slime ash composites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(5): 1080-1086. [8] WANG B M, LI G N, HAN JN, et al. Study on the properties of artificial flood prevention stone made by Yellow River silt[J]. Construction and Building Materials, 2017, 144: 484-492. [9] 杨丽艳,马鑫,梅锐锋,等.黄河流域沉沙池泥沙制备陶粒及其性能研究[J]. 无机盐工业,2022,54(5):109-115. YANG Liyan, MA Xin, MEI Ruifeng, et al. Study on preparation and performance of ceramsite from sediment in Yellow River desilting basin[J]. Inorganic Chemicals Industry, 2022, 54(5): 109-115. [10] 张洪磊,曹明莉.机械粉磨对黄河泥沙颗粒群特性及胶凝活性的影响[J]. 材料导报, 2024, 38(13): 144-149. ZHANG Honglei, CAO Mingli. Influence of mechanical grinding on the particle groups characteristics and cementitious activity of Yellow River sediment[J]. Materials Reports, 2024, 38(13): 144-149. [11] 中国建筑科学研究院.普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2007. [12] 交通部公路科学研究所.公路工程集料试验规程:JTG E42—2005[S]. 北京: 人民交通出版社, 2005. [13] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.矿物掺合料应用技术规范:GB/T 51003—2014[S]. 北京: 中国建筑工业出版社, 2014. [14] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水泥标准稠度用水量、凝结时间、安定性检测方法:GB/T 1346—2011[S]. 北京: 中国建筑材料联合会, 2012. [15] 中国建筑材料联合会. 水泥胶砂流动度测定方法:GB/T 2419—2005[S]. 北京: 全国水泥标准化技术委员会, 2005. [16] 国家市场监督管理总局,国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. [17] 施潇韵. 水灰比对水泥净浆凝结时间的影响[J]. 四川水泥, 2018(7): 8. SHI Xiaoyun.Influence of water-cement ratio on setting time of cement paste[J]. Sichuan Cement, 2018(7): 8. [18] LAGIER F, KURTIS K E. Influence of Portland cement composition on early age reactions with metakaolin[J]. Cement and Concrete Research, 2007, 37(10): 1411-1417. [19] WANG D H, SHI C J, FARZADNIA N, et al. A quantitative study on physical and chemical effects of limestone powder on properties of cement pastes[J]. Construction and Building Materials, 2019, 204: 58-69. [20] KAKALI G, TSIVILIS S, AGGELI E, et al. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3[J]. Cement and Concrete Research, 2000, 30(7): 1073-1077. [21] AVET F, SCRIVENER K. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement(LC3)[J]. Cement and Concrete Research, 2018, 107: 124-135. [22] ANTONI M, ROSSEN J, MARTIRENA F, et al. Cement substitution by a combination of metakaolin and limestone[J]. Cement and Concrete Research, 2012, 42(12): 1579-1589. [23] MOHAMED A R, ELSALAMAWY M, RAGAB M. Modeling the influence of limestone addition on cement hydration[J]. Alexandria Engineering Journal, 2015, 54(1): 1-5. [24] LI Y Q, MI T W, LIU W, et al. Chemical and mineralogical characteristics of carbonated and uncar-bonated cement pastes subjected to high temperatures[J]. Composites Part B: Engineering, 2021, 216: 108861. [25] LOTHENBACH B, SCRIVENER K, SNELLINGS R. A practical guide to microstructural analysis of cementitious materials[M]. Boca Raton, USA: Crc Press, 2016. [26] LI Y L, EYLEY S, THIELEMANS W, et al. Valorization of deep soil mixing residue in cement-based materials[J]. Resources, Conservation and Recycling, 2022, 187: 106597. [27] SHAH V, SCRIVENER K, BHATTACHARJEE B, et al. Changes in microstructure characteristics of cement paste on carbonation[J]. Cement and Concrete Research, 2018, 109: 184-197. [28] HALLET V, DE BELIE N, PONTIKES Y. The impact of slag fineness on the reactivity of blended cements with high-volume non-ferrous metallurgy slag[J]. Construction and Building Materials, 2020, 257: 119400. [29] LIU S H, WANG L, LI Q L, et al. Hydration properties of Portland cement-copper tailing powder composite binder[J]. Construction and Building Materials, 2020, 251: 118882. |
| [1] | 崔广芹, 张航, 朱巩硕, 张成志, 公衍德. 基于低pH一相注浆法的微生物固化土体试验研究[J]. 山东大学学报 (工学版), 2025, 55(1): 117-124. |
| [2] | 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121. |
| [3] | 郭豪彦,王振军,张海宝,史文涛,况栋梁. 多因素作用下水泥乳化沥青胶浆性能特征及机理[J]. 山东大学学报 (工学版), 2023, 53(1): 25-31. |
| [4] | 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110. |
| [5] | 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99. |
| [6] | 刘健,胡南琦,徐宝军,岳秀丽,齐泊良,仲奇. 水泥基土石坝防渗注浆材料试验[J]. 山东大学学报(工学版), 2018, 48(2): 39-45. |
| [7] | 刘德琦,张帆,范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93-98. |
| [8] | 孙欣,刘常春,赵玉娟,王新沛. 血液在体流动性无创测量方法及系统[J]. 山东大学学报(工学版), 2010, 40(6): 36-40. |
| [9] | 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95. |
| [10] | 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 . |
|
||