您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 91-99.doi: 10.6040/j.issn.1672-3961.0.2020.276

• ? • 上一篇    下一篇

基于数字图像的微观尺度下方解石脉对页岩各向异性的影响

宋怀雷1(),邬忠虎1,2,3,*(),李利平2,3,娄义黎1,孙文吉斌4,刘镐4,左宇军4   

  1. 1. 贵州大学土木工程学院, 贵州 贵阳 550025
    2. 山东大学齐鲁交通学院, 山东 济南 250002
    3. 山东大学岩土与结构工程研究中心, 山东 济南 250061
    4. 贵州大学矿业学院, 贵州 贵阳 550025
  • 收稿日期:2020-07-12 出版日期:2021-10-20 发布日期:2021-09-29
  • 通讯作者: 邬忠虎 E-mail:songhuaileigzu@163.com;wuzhonghugzu@163.com
  • 作者简介:宋怀雷(1994—), 男, 贵州织金人, 硕士研究生, 主要研究方向为岩石破坏机理的理论, 模拟方法. E-mail: songhuaileigzu@163.com
  • 基金资助:
    国家自然科学基金资助项目(51964007);国家自然科学基金资助项目(51774101);贵州省科研基金立项课题(YJSCXJH〔2020〕087);贵阳市轨道交通2号线一期工程科研课题(D2(I)-FW-YJ-2019-001-WT);贵州省科技计划资助项目([2020]4Y046);贵州省科技计划资助项目([2019]1075);贵州省科技计划资助项目([2018]1107);贵州大学“本科教学工程”建设项目(JG201990);贵州省水利厅科技专项经费资助项目(KT201804)

Influence of calcite veins on shale anisotropy at the microscopic scale based on digital images

Huailei SONG1(),Zhonghu WU1,2,3,*(),Liping LI2,3,Yili LOU1,Wenjibin SUN4,Hao LIU4,Yujun ZUO4   

  1. 1. College of Civil Engineering, Guizhou University, Guiyang 550025, Guizhou, China
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
    3. Research Center of Geotechnical and Structural Engineering, Shandong University, Jinan 250061, Shandong, China
    4. Mining College, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2020-07-12 Online:2021-10-20 Published:2021-09-29
  • Contact: Zhonghu WU E-mail:songhuaileigzu@163.com;wuzhonghugzu@163.com

摘要:

通过对牛蹄塘组页岩岩芯进行显微薄片观察和岩芯X射线全岩矿物衍射分析, 并进行7组不同方位角下的直接拉伸数值试验。试验结果表明: 方解石脉对页岩抗拉强度各向异性影响显著, 随着方位角α的增大, 抗拉强度逐渐递减, 抗拉强度的方解石脉结构效应系数随方位角α的增大呈曲线型增长趋势, 在α=90°达到最大, 为0.127;不同角度下的页岩试样破坏模式异常复杂, 大致可归纳为以下3类: 树根形(0°、15°)、台阶形(30°、45°、60°)和河流形(75°、90°), 裂缝优先沿方解石脉扩展, 在水力压裂过程中可能会抑制页岩基质内复杂裂缝网的形成; 不同角度的方解石脉下耗散能的释放也有显著的差异, 当α=0°、15°、30°、45°时, 声发射(acoustic emission, AE)能量在前期较小, 接近峰值应力时快速增加直至最大; α=60°、75°、90°时, AE能量在初期较小, 中期开始增加, 接近峰值应力时最大; 累计AE能量随着应变的增大大致呈指数增加, 增长过程由3个阶段构成: 平缓期、加速期和暴增期。研究成果对页岩储层水力裂缝萌生、扩展预测以及提高采收率等具有重要的参考价值。

关键词: 页岩, 数字图像处理, 岩石破裂, 声发射能量, 微观结构

Abstract:

The Niutitang Formation shale cores were observed by micro-slice observations and core X-ray whole-rock mineral diffraction analysis, and 7 groups of direct tensile numerical tests under different azimuth angles were performed. The test results showed that the calcite veins had a significant effect on the anisotropy of shale tensile strength. When the azimuth angle increased, the tensile strength gradually decreased. The bedding effect coefficient of tensile strength showed a curve-like growth trend with the increase of azimuth angle, which reached the maximum when α=90°, which was 0.127. The failure modes of shale samples at different angles were very complicated, which could be roughly divided into the following three categories: tree root shape (0°, 15°), step shape (30°, 45°, 60°) and river shape (75°, 90°). Fractures preferentially extended along calcite veins, which might inhibit the formation of complex fracture networks in the shale matrix during hydraulic fracturing. There were also significant differences in the release of dissipated energy under the calcite veins at different angles. The release of dissipated energy under the calcite veins at different angles was also significantly different. When α=0°, 15°, 30°, and 45°, the AE energy was small in the early stage, and increased rapidly to the maximum when it approached the peak stress. When α=60°, 75°, 90°, the AE energy was small in the early stage, and began to increase in the middle stage, and it was the largest when it was close to the peak stress. The cumulative AE energy increased roughly exponentially with increasing strain, and the growth process consisted of three stages: flat period, accelerated period and skyrocketing period. The research results had important reference value for the initiation of hydraulic fractures in shale reservoirs, the prediction of expansion, and the enhancement of oil recovery.

Key words: shale, digital image processing, rock fracture, acoustic emission energy, microstructure

中图分类号: 

  • P618.12

图1

X射线全岩衍射分析图"

表1

材料参数"

材料 弹性模量/GPa 抗拉强度/MPa 拉压比 泊松比ν 内摩擦角λ/(°)
页岩 51.6 11.67 14 0.22 35
方解石 80.5 9.00 11 0.30 30
石英 96.0 14.00 15 0.08 60

图2

页岩显微薄片图像获取过程"

图3

AA′扫描线上I变化曲线"

图4

阈值分割后的图像"

图5

不同方位角下页岩数字图像"

图6

模型加载示意图"

表2

页岩的单轴最大抗拉强度及方解石脉各向异性系数"

方位角α/(°) 抗拉强度/MPa S(α)
0 3.562 0.000
15 3.349 0.060
30 3.275 0.081
45 3.235 0.092
60 3.206 0.100
75 3.140 0.118
90 3.110 0.127

图7

不同方位角下页岩抗拉强度和方解石脉各向异性系数变化趋势"

图8

45°页岩试件损伤演化划分过程与累计声发射的对应关系图"

图9

不同方位角下页岩的单轴拉伸损伤演化过程图"

图10

不同方位角下应力、AE能量、累计AE能量随应变的变化趋势图"

1 聂海宽, 边瑞康, 张培先, 等. 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J]. 地学前缘, 2014, 21 (4): 331- 343.
NIE Haikuan , BIAN Ruikang , ZHANG Peixian , et al. Micro-types and characteristics of the lower paleozoic in southeast Sichuan basin, and their effects on the gas content[J]. Earth Science Frontiers, 2014, 21 (4): 331- 343.
2 YIN Shuai , XIE Runcheng , WU Zhonghu , et al. In situ stress heterogeneity in a highly developed strike-slip fault zone and its effect on the distribution of tight gases: a 3D finite element simulation study[J]. Marine and Petroleum Geology, 2019, 99, 75- 91.
doi: 10.1016/j.marpetgeo.2018.10.007
3 HAN Chao , JIANG Zaixing , HAN Mei , et al. The lithofacies and reservoir characteristics of the Upper Ordovician and Lower Silurian black shale in the Southern Sichuan Basin and its periphery, China[J]. Marine and Petroleum Geology, 2016, 75, 181- 191.
doi: 10.1016/j.marpetgeo.2016.04.014
4 于永军, 朱万成, 李连崇, 等. 深地层煤岩组合体水力压裂裂缝扩展模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1 (3): 96- 108.
YU Yongjun , ZHU Wancheng , LI Lianchong , et al. Simulations on hydraulic fracture propagation of coal-rock combination in deep underground[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1 (3): 96- 108.
5 WANG Ruyue , HU Zongquan , SUN Chuanxiang , et al. Comparative analysis of shale reservoir characteristics in the Wufeng-Longmaxi (O3w-S1l) and Niutitang (?1n) Formations: a case study of wells JY1 and TX1 in the southeastern Sichuan Basin and its neighboring areas, southwestern China[J]. Interpretation, 2018, 6 (4): SN31- SN45.
doi: 10.1190/INT-2018-0024.1
6 刘朋志, 郭和坤, 沈瑞, 等. 基于气体吸附法和压汞法对页岩孔隙结构的研究[J]. 力学与实践, 2018, 40 (5): 514- 519.
LIU Pengzhi , GUO Hekun , SHEN Rui , et al. Study of the pore structure of shale based on gas adsorption method and mercury intrusion method[J]. Mechanics in Engineering, 2018, 40 (5): 514- 519.
7 WU Zhonghu , ZUO Yujun , WANG Shanyong , et al. Numerical simulation and fractal analysis of mesoscopic scale failure in shale using digital images[J]. Journal of Petroleum Science and Engineering, 2016, 145, 592- 599.
doi: 10.1016/j.petrol.2016.06.036
8 LOU Yili , WU Zhonghu , SUN Wenjibin , et al. Study on failure models and fractal characteristics of shale under seepage-stress coupling[J]. Energy Science & Engineering, 2020, 8 (5): 1634- 1649.
9 孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究[J]. 岩石力学与工程学报, 2019, 38 (7): 1319- 1331.
SUN Qingpei , ZHANG Zhizhen , LI Peichao , et al. Study on the bedding effect and damage constitutive model of black shale under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (7): 1319- 1331.
10 MICHAEL R C , PHILIP G M , NICOLAS B , et al. Fracture toughness anisotropy in shale[J]. Journal of Geophysical Research: Solid Earth, 2016, 121 (3): 1706- 1729.
doi: 10.1002/2015JB012756
11 HENG Shuai , GUO Yingtong , YANG Chunhe , et al. Experimental and theoretical study of the anisotropic properties of shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74, 58- 68.
doi: 10.1016/j.ijrmms.2015.01.003
12 WANG Yu , LI Changhong , HUYanzhi , et al. Brazilian test for tensile failure of anisotropic shale under different strain rates at quasi-static loading[J]. Energies, 2017, 10 (9): 1324.
doi: 10.3390/en10091324
13 范翔宇, 郭东亚, 张千贵, 等. 考虑层理、加载速率与尺寸效应的页岩裂纹扩展机理试验[J]. 科学技术与工程, 2018, 18 (9): 63- 71.
doi: 10.3969/j.issn.1671-1815.2018.09.009
FAN Xiangyu , GUO Dongya , ZHANG Qiangui , et al. Experimental study on the crack propagation mechanism of shale considering the effect of the bedding, loading rate and sample size[J]. Science Technology and Engineering, 2018, 18 (9): 63- 71.
doi: 10.3969/j.issn.1671-1815.2018.09.009
14 LI Weixin , JIN Zhefei , GIANLUCA C . Size effect analysis for the characterization of marcellus shale quasi-brittle fracture properties[J]. Rock Mechanics and Rock Engineering, 2019, 52 (1): 1- 18.
doi: 10.1007/s00603-018-1570-6
15 于永军, 梁卫国, 毕井龙, 等. 油页岩热物理特性试验与高温热破裂数值模拟研究[J]. 岩石力学与工程学报, 2015, 34 (6): 1106- 1115.
YU Yongjun , LIANG Weiguo , BI Jinglong , et al. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (6): 1106- 1115.
16 YANG Guoliang , LIU Jie , LI Xuguang , et al. Effect of temperature on shale strength under dynamic impact loading[J]. Arabian Journal of Geosciences, 2020, 13 (12): 432.
doi: 10.1007/s12517-020-05435-2
17 宋付权, 胡箫, 纪凯, 等. 考虑流固耦合影响的页岩力学性质和渗流规律[J]. 天然气工业, 2017, 37 (7): 69- 75.
SONG Fuquan , HU Xiao , JI Kai , et al. Effect of fluid—solid coupling on shale mechanics and seepage laws[J]. Natural Gas Industry, 2017, 37 (7): 69- 75.
18 WU Zhonghu , ZUO Yujun , WANG Shanyong , et al. Experimental study on the stress sensitivity and influence factors of shale under varying stress[J]. Shock and Vibration, 2018, 2018, 1- 9.
19 谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996.
20 朱万成, 唐春安, 杨天鸿, 等. 岩石破裂过程分析用(RFPA~(2D))系统的细观单元本构关系及验证[J]. 岩石力学与工程学报, 2003, 22 (1): 24- 29.
doi: 10.3321/j.issn:1000-6915.2003.01.004
ZHU Wangcheng , TANG Chunan , YANG Tianhong , et al. Constitutive relationship of mesoscopic elements used in RFPA2D and its validations[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22 (1): 24- 29.
doi: 10.3321/j.issn:1000-6915.2003.01.004
21 娄义黎, 邬忠虎, 王安礼, 等. 流固耦合作用下页岩破裂过程的数值模拟[J]. 煤田地质与勘探, 2020, 48 (1): 105- 112.
doi: 10.3969/j.issn.1001-1986.2020.01.014
LOU Yili , WU Zhonghu , WANG Anli , et al. Num-erical simulation of rupture process of shale under action of fluid-solid coupling[J]. Coal Geology & Exploration, 2020, 48 (1): 105- 112.
doi: 10.3969/j.issn.1001-1986.2020.01.014
22 TANG C A , YANG W T , FU Y F , et al. A new approach to numerical method of modelling geological processes and rock engineering problems: continuum to discontinuum and linearity to nonlinearity[J]. Engin-eering Geology, 1998, 49 (3/4): 207- 214.
23 WU Zhonghu , LOU Yili , YIN Shuai , et al. Acoustic and fractal analyses of the mechanical properties and fracture modes of bedding-containing shale under different seepage pressures[J]. Energy Science & Engineering, 2020, 8 (10): 3638- 3656.
24 李冰峰, 左宇军, 李伟, 等. 基于数字图像处理的含缺陷花岗岩破裂力学分析[J]. 力学与实践, 2016, 38 (3): 262- 268.
LI Bingfeng , ZUO Yujun , LI Wei , et al. Analysis on fracture mechanics of granite containing flaws based on digital image processing[J]. Mechanics in Engineering, 2016, 38 (3): 262- 268.
25 王晓雷. 软岩层理结构效应实验研究[D]. 北京: 中国矿业大学, 2013.
WANG Xiaolei. Experimental study on bedding structure effect of soft rock[D]. Beijing: China University of Mining and Technology, 2013.
26 WU F , WU J , QI S . Phenomena and theoretical analysis for the failure of brittle rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2 (4): 331- 337.
27 TANG C A , XU X H , KOU S Q , et al. Numerical investigation of particle breakage as applied to mechanical crushing: part Ⅰ: single-particle breakage[J]. Inter-national journal of rock mechanics and mining sciences, 2001, 38 (8): 1147- 1162.
doi: 10.1016/S1365-1609(01)00075-2
28 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24 (17): 3003- 3010.
doi: 10.3321/j.issn:1000-6915.2005.17.001
XIE Heping , JU Yang , LI Liyun . Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (17): 3003- 3010.
doi: 10.3321/j.issn:1000-6915.2005.17.001
[1] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[2] 刘德琦,张帆,范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93-98.
[3] 梁冰,兰波,王俊光. 水影响下油页岩三轴压缩力学特性试验研究[J]. 山东大学学报(工学版), 2011, 41(5): 82-85.
[4] 张乐文 邱道宏 程远方. 井壁稳定的力化耦合模型研究[J]. 山东大学学报(工学版), 2009, 39(3): 111-114.
[5] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95.
[6] 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[2] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[3] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92 -95 .
[4] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .
[5] 关小军,韩振强,申孝民,麻晓飞,刘运腾 . 09CuPTiRE钢动态再结晶的热模拟实验与有限元模拟[J]. 山东大学学报(工学版), 2006, 36(5): 17 -20 .
[6] 张爱娟. 模拟体液中类骨羟基磷灰石的合成[J]. 山东大学学报(工学版), 2010, 40(3): 86 -90 .
[7] 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58 -63 .
[8] 贾超,赵建宇,徐帮树,岳长城,李树忱 . 清水隧道围岩软土振动液化研究[J]. 山东大学学报(工学版), 2008, 38(1): 83 -87 .
[9] 李术才,王兆清,李树忱 . 基于无理函数插值的多边形有限元方法[J]. 山东大学学报(工学版), 2008, 38(2): 66 -70 .
[10] 郝明辉,王锡平,王敏,周慎杰 .

考虑偶应力影响的有限大板单边裂纹计算

[J]. 山东大学学报(工学版), 2008, 38(2): 92 -95 .