山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 93-98.doi: 10.6040/j.issn.1672-3961.0.2015.031
• • 上一篇
刘德琦,张帆,范同祥
LIU Deqi, ZHANG Fan, FAN Tongxiang
摘要: 将银粗糙化的蝶翅三维结构引入到表面增强拉曼散射(surface enhanced Raman scattering, SERS)基材中,提高检测效果。采用绿带翠凤蝶蝶翅作为基板,将纳米银金属颗粒负载其上,合成了经有序粗糙化的表面增强拉曼散射基底。采用场发射扫描电镜及透射电镜分析了有序银粗糙化蝶翅SERS基底的形貌特征。并以罗丹明6G作为探针分子,可检测到浓度低至10-14mol/L的标样溶液,且检测效果好于二维平板SERS基底,经计算得到绿带翠凤蝶SERS基底的增强因子为1.57×107。在试验的基础上,结合三维有限时域差分的计算方法(finite difference time domain, FDTD),模拟计算得到绿带翠凤蝶SERS基底的电场强度E分布,其log|E|2的值为3.85,其对激发光的反射率仅为6%。研究表明银粗糙化的蝶翅三维结构,可以使表面的电场强度有显著增强。
中图分类号:
[1] ALBRECHT M G, CREUGHTON J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J].Journal of the American Chemical Society, 1977, 99(15):5215-5217. [2] WANG D S, CHEW H, KERKER M. Enhanced Raman scattering at the surface(SERS)of a spherical particle[J].Applied Optics, 1980, 19(14):2256-2257. [3] 黄延敏, 主沉浮,陈淑祥, 等. 微纳米聚丙烯保鲜盒中微纳米银向食品模拟液中的迁移研究[J].山东大学学报(工学版), 2010, 40(2):110-112. HUANG Yanmin, ZHU Chenfu, CHEN Shuxiang, et al. Micro/nano-silver migration into food simulations from micro/nano polypropylene chambers[J]. Journal of Shandong University(Engineering Science), 2010, 40(2):110-112. [4] KNEIPP K, WANG Y, KNEIPP H, et al.Single molecule detection using surface-enhanced Raman scattering(SERS)[J].Physical Review Letters, 1997, 78(9):1667-1674. [5] 胡冰,徐蔚青,王魁香.由介电函数探讨效应的电磁增强机理[J].吉林大学自然科学学报, 2001, 41(2):57-63. HU Bing, XU Weiqing, WANG Kuixiang, et al. Discussion on the electromagnetic theory of SERS according to dielectric function [J]. Acta Scientiarum Naturalium Universitatis Jilinensis, 2001, 41(2):57-63. [6] HARTLAND G V.Coherent vibrational motion in metal particles: etermination of the vibrational amplitude and excitation mechanism[J].The Journal of Chemical Physics, 2002, 116(18):8048-8055. [7] SCHATZ G C.Theoretical studies of surface enhanced Raman scattering[J].Accounts of Chemical Research, 1984, 17(10):370-376. [8] NEVIERE M, REINISCH R.Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman scattering[J].Physical Review B, 1982, 26(10):5403-5412. [9] WANG D S, KERKER M.Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids[J].Physical Review B, 1981, 24(4):1777-1783. [10] JENSEN T R, DUBAL M L, KELLY K L, et al. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles[J].The Journal of Physical Chemistry: B, 1999, 103(45):9846-9853. [11] NOVAK J P, BROUSSEAU L C, VANCE F W.Nonlinear optical properties of molecularly bridged gold nanoparticle arrays[J].Journal of the American Chemical Society, 2000, 122(48):12029-12030. [12] MALINSKY M D, KELLY K L, SCHATZ G C, et al.Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers[J].Journal of the American Chemical Society, 2001, 123(7):1471-1482. [13] ZHOU Ying, LI Xuanhua, REN Xingang. Designing and fabricating double resonance substrate with metallic nanoprticles-metallic grating coupling system for highly intensified suface-enhanced Raman spectroscopy[J].Analyst, 2014, 139(67):4799-4804. [14] LIBERMAN V, YILMAZ C, BLOOMSTEIN T M, et al.A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates[J].Advanced Materials, 2010, 22(38):4298-4302. [15] TAN Yongwen, GU Jiajun, ZANG Xining, et al.Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J].Angew Chemie, 2011, 50(25):8370-8374. [16] CHWARTZHERG A M, GRANT C D, WOLCOTT A, et al.Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate[J].The Journal of Physical Chemistry: B, 2004, 108(50):19191-19197. [17] 陈挺, 覃继宁, 范同祥.仿蝉翼结构镍磷复合材料减反性能研究[J].山东大学学报(工学版), 2014, 44(1):80-84. CHEN Ting, QIN Jining, FAN Tongxiang. Anti-reflective property of Ni-P/cicada microstructure composites[J]. Journal of Shandong University(Engineering Science), 2014, 44(1):80-84. [18] 于奎龙, 范同祥.蝶翅二维光子晶体结构Y2O3:Eu3+的仿生制备[J].山东大学学报(工学版), 2012, 42(1):121-126. YU Kuilong, FAN Tongxiang. Biomimetic fabrication of 2D photonic Y2O3:Eu3+ phosphor templated from butterfly wing scales [J]. Journal of Shandong University(Engineering Science), 2012, 42(1):121-126. [19] 丁月蕾,刘辉晖,范同祥.蝶类纳米点阵复眼结构超黑材料探索研究[J].山东大学学报(工学版), 2011, 41(2):135-139. DING Yuelei, LIU Huihui, FAN Tongxiang. High efficient anti-reflection of ultra-black carbon materials tailoring the nano structure of butterfly compound eyes [J]. Journal of Shandong University(Engineering Science), 2011, 41(2):135-139. [20] LOU S, GUO X, FAN T, et al.Butterflies: inspiration for solar cells and sunlight water-splitting catalysts[J].Energy & Environmental Science, 2012, 5(11):9195-9216. [21] JENSEN L, SCHATZ G C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory[J].The Journal of Physical Chemistry: A, 2006, 110(18):5973-5977. [22] YANG W H, SCHATZ G C, VAN Duyne R P.Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes[J].The Journal of Chemical Physics, 1995, 103(3):869-875. [23] HUMMEL R E, WISSMANNi P. Handbook of Optical Properties: Optics of Small Particles,Interfaces and Surfaces, Volumn II[M].Florida: CRC Press, 1996. [24] LE Ru E C, BLACKIE E, MEYER M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J].The Journal of Physical Chemistry:C, 2007, 111(37):13794-13803. |
No related articles found! |
|