山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 117-124.doi: 10.6040/j.issn.1672-3961.0.2023.302
崔广芹,张航*,朱巩硕,张成志,公衍德
CUI Guangqin, ZHANG Hang*, ZHU Gongshuo, ZHANG Chengzhi, GONG Yande
摘要: 针对微生物诱导碳酸钙沉淀(microbial induced calcite precipitation, MICP)技术在固化土体的过程中存在碳酸钙分布不均匀的问题,采用低pH一相注浆法对微生物固化土体试样过程中碳酸钙的分布情况开展试验研究。通过正交试验,确定最优培养方案为:pH=3.0、OD600=4.0、胶结液浓度cs=2.00 mol/L。基于最优注浆方案研究微生物固化土体试样中碳酸钙的分布情况和试样强度变化特性,并通过扫描电镜测试,观察固化试样的微观结构特征。结果表明:低pH一相注浆法有助于促进微生物反应过程中碳酸钙的均匀性分布,相较于两相注浆法,低pH一相注浆法固化试样的内摩擦角增大17.9%,黏聚力增大46.3%,压缩模量增大22.4%。
中图分类号:
[1] PHILLIPS A J, TROYER E, HIEBERT R, et al. Enhancing wellbore cement integrity with microbially induced calcite precipitation(MICP):a field scale demonstration[J]. Journal of Petroleum Science and Engineering, 2018, 171:1141-1148. [2] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4):643-653. HE Jia, CHU Jian, LIU Hanlong, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4):643-653. [3] WHIFFIN V S.Microbial CaCO3 precipitation for the production of biocemen[D]. Western Australia:Murdoch University, 2004. [4] QIAN C X, YU X N, WANG X.A study on the cementation interface of biocement[J]. Materials Characterization, 2018, 136:122-127. [5] 王传旭, 赵爱华, 于慧瑛, 等.淀粉酶高产菌株的筛选、紫外诱变及产酶条件优化[J]. 微生物学通报, 2022, 49(5):1759-1773. WANG Chuanxu, ZHAO Aihua, YU Huiying, et al.Screening, UV mutagenesis, and production optimization of a strain with high yield of amylase[J]. Microbiology China, 2022, 49(5):1759-1773. [6] CUI M J, LAI H J, HOANG T, et al.Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement[J]. Acta Geotechnica, 2022, 17(7):2931-2941. [7] MUJAH D, LIANG C, MOHAMED A S. Microstructural and geomechanical study on biocemented sand for optimization of MICP process[J]. Journal of Materials in Civil Engineering, 2019, 31(4):19-25. [8] MARTINEZ B C, DEJONG J T, GINN T R.Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow[J]. Computers & Geotechnics, 2014, 58(20):1-13. [9] GOMEZ M G, GRADDY C, DEJONG J T, et al. Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms [J]. Scientific Reports, 2019, 7(9):115-163. [10] DAWOUD O, CHEN C Y, SOGA K. Microbial-induced calcite precipitation(MICP)using surfactants[C] //Geo-Characterization and Modeling for Sustainability. Atlanta, USA:Geo-Congress, 2014:1635-1643. [11] STOCKS-FISCHER S, GALINAT J K, BANG S S. Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 1999, 31(11):1563-1571. [12] WHIFFIN V S, VAN PAASSEN L A, HARKES M P.Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5):417-423. [13] HARKES M P, VAN PAASSEN L A, BOOSTE R J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinfor-cement[J]. Ecological Engineering, 2010, 36(2):112-117. [14] NAYANTHARA P, DASSANAYAKE A, NAKASH-IMA K, et al. Biocementation of Sri Lankan beach sand using locally isolated bacteria:a baseline study on the effect of segregated culture media[J]. International Journal of Geomate, 2019, 17(63):55-62. [15] ZHAO Qian, LI Lin, LI Chi, et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease[J]. Journal of Materials in Civil Engineering, 2014, 26(12):401-409. [16] XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11):191-201. [17] 徐溪晨, 郭红仙, 程晓辉, 等. 钙源对微生物矿化胶结砂土材料均匀性的影响[J]. 土木与环境工程学报(中英文), 2023, 12(5):1-8. XU Xichen, GUO Hongxian, CHENG Xiaohui, et al. The influence of calcium sources on the uniformity of microbially induced carbonate precipitation(MICP)in cemented sand materials[J]. Journal of Civil and Environmental Engineering(Chinese and English), 2023, 12(5):1-8. [18] CHENG L, SHAHIN M A, CHU J. Soil bio-cementation using a new one-phase low-pH injection method[J]. Acta Geotechnica, 2019, 14(3): 615-626. [19] 水利部水利水电规划设计总院,南京水利科学研究院. 土工试验方法标准:GB/T50123—2019[S].北京:中国计划出版社, 2019. [20] WHIFFIN V S.M icrobial CaCO3 precipitation for the production of biocement[D]. Perth:Murdoch University, 2004. [21] 邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1):128-134. SHAO Guanghui, HOU Min, LIU Peng. Distribution and immobilization of bacteria in solidified silty soil[J]. Journal of Forestry Engineering, 2019, 4(1):128-134. [22] XIAO Y, LIU H, NAN B, et al.Gradation-dependent thermal conductivity of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(9):60-68. [23] MO RTENSEN B M, HABE R M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2):338-349. [24] 赵茜.微生物诱导碳酸钙沉淀(MICP)固化土壤实验研究[D]. 北京:中国地质大学, 2014. ZHAO Qian. An experimental study on soil solidification by microbial-induced calcium carbonate precipitation(MICP)[D]. Beijing:China University of Geosci-ences, 2014. [25] OKWADHA G D O, LI J.Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81(9):1143-1148. [26] 孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11):3225-3230. SUN Xiaohao, MIAO Linchang, TONG Tianzhi, et al. Experimental study on microbial deposition of calciumcarb onate solidified sand[J]. Geotechnical Mechanics, 2017, 38(11):3225-3230. [27] LIN H, SULEIMAN M T, BROWN D G. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation(MICP)[J]. Soils and Foundations, 2020, 60(4):944-961. |
[1] | 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121. |
[2] | 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110. |
[3] | 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99. |
[4] | 刘德琦,张帆,范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93-98. |
[5] | 武农, 张霄, 李梦天. 孔隙砂岩地层涌水灾害注浆治理的新设备及方法研究[J]. 山东大学学报(工学版), 2015, 45(4): 64-68. |
[6] | 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95. |
[7] | 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|