山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 88-99.doi: 10.6040/j.issn.1672-3961.0.2024.075
• 机器学习与数据挖掘 • 上一篇
文裕杰,张达敏*
WEN Yujie, ZHANG Damin*
摘要: 针对白鲸优化算法搜索效率不足、易陷入局部极值的问题,提出增强型白鲸优化算法(enhance beluga whale optimization, EBWO)。加入基于权重的抢食型白鲸并应用于算法的开发阶段,丰富该阶段的位置更新方式,利用贪婪机制选择更优位置,提高解的质量;引入自适应高斯策略对鲸坠阶段的白鲸局部扰动,使其调整至最优位置附近,加快算法的收敛速度;使用凸透镜成像学习策略对信息分享后的位置做反向处理,提高算法跳出局部最优值的能力。通过对10个基准测试函数和CEC2020测试集的寻优对比分析,以及Wilcoxon秩和检验可知,EBWO的寻优速度和收敛精度都得到较大提升。为了验证EBWO算法的实用性和可行性,将其应用到减速器和压力容器工程设计的求解,通过试验分析可知,EBWO算法在解决实际优化问题上具有一定的优越性。
中图分类号:
| [1] 杜晓昕, 周薇, 王浩, 等. 智能算法的亚群优化策略综述[J]. 计算机应用, 2024, 44(3): 819-830. DU Xiaoxin, ZHOU Wei, WANG Hao, et al. Survey of subgroup optimization strategies for intelligent algorithms[J]. Journal of Computer Applications, 2024, 44(3): 819-830. [2] 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化方法[J]. 计算机应用, 2024, 44(5):1386-1392. TIAN Ye, CHEN Jinjin, ZHANG Xingyi. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization[J]. Journal of Computer Applications, 2024, 44(5):1386-1392. [3] 任洁, 彭建文. 求解多目标优化问题的邻近牛顿法[J]. 应用数学学报, 2022, 45(2): 222-237. REN Jie, PENG Jianwen. Proximal Newton methods for multiobjective optimization problems[J]. Acta Mathe-maticae Applicatae Sinica, 2022, 45(2): 222-237. [4] 张林, 沈佳颖, 胡传陆, 等. 基于信噪比的学习型哈里斯鹰算法[J/OL]. 北京航空航天大学学报. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433 ZHANG Lin, SHEN Jiaying, HU Chuanlu, et al. Learning Haris hawks optimization agorithm with signal-to-noise rato[J/OL]. Journal of Beljing University of Aeronautics and Astronautics. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433 [5] BRAIK M S. Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems[J]. Expert Systems with Applications, 2021, 174: 114685. [6] BENYAMIN A, SOLEIMANIAN G F, SEYEDALI M. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408. [7] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. [8] SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651. [9] 刘庆鑫, 齐琦, 贾鹤鸣, 等. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报(工学版), 2023, 53(4): 93-103. LIU Qingxin, QI Qi, JIA Heming, et al. Aquila optimizer based on hybrid improved strategies[J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 93-103. [10] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215. [11] 梁天添, 王英东, 杨健雄, 等. 测量丢失下时滞惯性系统故障估计的优化鲁棒Kalman滤波[J].中国惯性技术学报, 2023, 31(6):627-636. LIANG Tiantian, WANG Yingdong, YANG Jianxiong, et al. Optimized robust Kalman filtering for fault estimation of time-delay inertial systems with missing measurement[J]. Journal of Chinese Inertial Tech-nology, 2023, 31(6):627-636. [12] 汪业正午, 季亮, 常潇, 等. 故障下新能源场站间主动电压支撑协调控制策略[J]. 太阳能学报, 2023, 44(12): 560-567. WANG Yezhengwu, JI Liang, CHANG Xiao, et al. Active voltage support coordination control strategy between new energy field stations under failure[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 560-567. [13] 孔云, 周学良, 冷杰武. 基于改进白鲸优化算法的低碳柔性工艺规划[J]. 现代制造工程, 2024(1): 80-88. KONG Yun, ZHOU Xueliang, LENG Jiewu. Low-carbon flexible process planning based on improved beluga whale optimization algorithm[J]. Modern Manufacturing Engineering, 2024(1): 80-88. [14] 陈元健, 黄靖, 孙晓, 等. 基于BWO优化VMD联合小波阈值的管道泄漏次声波去噪方法[J]. 机电工程技术, 2024, 53(3): 54-59. CHEN Yuanjian, HUANG Jing, SUN Xiao, et al. Research on infrasound denoising method for pipeline leakage based on BWO optimized VMD joint wavelet thresholding[J]. Mechanical & Electrical Engineering Technology, 2024, 53(3): 54-59. [15] JIA H M, WEN Q X, WU D, et al. Modified beluga whale optimization with multi-strategies for solving engineering problems[J]. Journal of Computational Design and Engineering, 2023, 10(6): 2065-2093. [16] 陈心怡, 张孟健, 王德光. 基于Fuch映射的改进白鲸优化算法及应用[J]. 计算机工程与科学, 2024, 46(8): 1482-1492. CHEN Xinyi, ZHANG Mengjian, WANG Deguang. Improved beluga whale optimization algorithms based on Fuch mapping and applications[J]. Computer Engineering & Science, 2024, 46(8): 1482-1492. [17] 王亚辉, 张虎晨, 王学兵, 等. 基于混沌反向学习和水波算法改进的白鲸优化算法[J]. 计算机应用研究, 2024, 41(3): 729-735. WANG Yahui, ZHANG Huchen, WANG Xuebing, et al. Improved beluga whale optimization algorithm based onchaotic inverse learning and water wave algorithm[J]. Application Research of Computers, 2024, 41(3): 729-735. [18] 陈曦明, 张军伟. 融合FDB策略和切线飞行的改进白鲸优化算法[J]. 计算机时代, 2023(11): 46-51. CHEN Ximing, ZHANG Junwei. Improved BWO algorithm combining FDB strategy and tangent flight[J]. Computer Era, 2023(11): 46-51. [19] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J].计算机工程与应用, 2023, 59(22): 92-110. PAN Jincheng, LI Shaobo, ZHOU Peng, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110. [20] 肖怡心, 刘三阳. 融合模式搜索的蝗虫优化算法及其应用[J]. 西安电子科技大学学报, 2024, 51(2): 137-156. XIAO Yixin, LIU Sanyang. Integration of pattern search into the grasshopper optimization algorithm and its applications[J]. Journal of Xidian University, 2024, 51(2): 137-156. [21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. [22] KENNEDY J, EBERHART R. Particle swarm opti-mization[C] // Perth, Australia: IEEE, 1995, 4: 1942-1948. [23] 向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 计算机应用, 2023, 43(3): 820-826. XIANG Junxing, WU Yonghong. Hybrid salp swarm and butterfly optimization algorithm combined with neighborhood centroid opposition-based learning[J]. Journal of Computer Applications, 2023, 43(3): 820-826. |
| [1] | 杨巨成,韩书杰,毛磊,代翔子,陈亚瑞. 胶囊网络模型综述[J]. 山东大学学报 (工学版), 2019, 49(6): 1-10. |
| [2] | 方波,陈红梅. 一种新的双策略进化果蝇优化算法[J]. 山东大学学报 (工学版), 2019, 49(3): 22-31. |
| [3] | 吴红岩,冀俊忠. 基于花授粉算法的蛋白质网络功能模块检测方法[J]. 山东大学学报(工学版), 2018, 48(1): 21-30. |
| [4] | 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29. |
| [5] | 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62. |
| [6] | 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85. |
| [7] | 邬慧敏,吴璟莉. 重建二倍体个体单体型的改进环基算法[J]. 山东大学学报(工学版), 2016, 46(4): 9-14. |
| [8] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
| [9] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6. |
| [10] | 文志强,朱文球,胡永祥. 半调图像的分类方法[J]. 山东大学学报(工学版), 2013, 43(4): 7-12. |
| [11] | 徐姗姗,刘应安*,徐昇. 立体匹配中边界信息的强化算法[J]. 山东大学学报(工学版), 2012, 42(6): 43-49. |
| [12] | 陈明志1,2, 陈健3, 许春耀3, 余轮3, 林柏钢1,2. 一种新的基于网络虚拟环境的用户访问模式聚类算法[J]. 山东大学学报(工学版), 2011, 41(6): 43-49. |
| [13] | 吴天柱 . 基于RBF神经网络的彩色图像盲水印算法[J]. 山东大学学报(工学版), 2008, 38(2): 51-55 . |
| [14] | 贾银亮,张焕春,经亚枝,刘 晶 . 6步直线生成算法[J]. 山东大学学报(工学版), 2007, 37(1): 61-64 . |
| [15] | 张劲松,李歧强,王朝霞 . 基于混沌搜索的混和粒子群优化算法[J]. 山东大学学报(工学版), 2007, 37(1): 47-50 . |
|
||