您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (3): 88-99.doi: 10.6040/j.issn.1672-3961.0.2024.075

• 机器学习与数据挖掘 • 上一篇    

增强型白鲸优化算法及其应用

文裕杰,张达敏*   

  1. 贵州大学大数据与信息工程学院, 贵州 贵阳 550025
  • 发布日期:2025-06-05
  • 作者简介:文裕杰(1999— ),男,贵州凯里人,硕士研究生,主要研究方向为智能优化与工业互联网安全. E-mail:3596682950@qq.com. *通信作者简介:张达敏(1967— ),男,贵州贵阳人,教授,硕士生导师,博士,主要研究方向为智能优化与计算机应用技术. E-mail:1203813362@qq.com
  • 基金资助:
    国家自然科学基金资助项目(62166006)

Enhanced beluga whale optimization algorithm and its application

WEN Yujie, ZHANG Damin*   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, China
  • Published:2025-06-05

摘要: 针对白鲸优化算法搜索效率不足、易陷入局部极值的问题,提出增强型白鲸优化算法(enhance beluga whale optimization, EBWO)。加入基于权重的抢食型白鲸并应用于算法的开发阶段,丰富该阶段的位置更新方式,利用贪婪机制选择更优位置,提高解的质量;引入自适应高斯策略对鲸坠阶段的白鲸局部扰动,使其调整至最优位置附近,加快算法的收敛速度;使用凸透镜成像学习策略对信息分享后的位置做反向处理,提高算法跳出局部最优值的能力。通过对10个基准测试函数和CEC2020测试集的寻优对比分析,以及Wilcoxon秩和检验可知,EBWO的寻优速度和收敛精度都得到较大提升。为了验证EBWO算法的实用性和可行性,将其应用到减速器和压力容器工程设计的求解,通过试验分析可知,EBWO算法在解决实际优化问题上具有一定的优越性。

关键词: 白鲸优化算法, 抢食白鲸, 高斯扰动, 凸透镜成像, 工程应用

Abstract: Aiming at overcoming drawbacks of insufficient search efficiency and tendency to slip into local extremes of beluga optimization algorithm, an enhanced beluga whale optimization(EBWO)algorithm was proposed in this paper. First, a weight-based scramble beluga was included and applied to the algorithm's development phase to enrich the position updating technique, and a greedy mechanism was employed to select a better location and increase the quality of the understanding. Second, an adaptive Gaussian strategy was introduced to locally perturb the beluga in the whale falling phase, to make it adjusted to the vicinity of the optimal position to improve the convergence speed of the algorithm. Finally, a convex lens imaging learning strategy was used to carry out the information position after sharing. The comparative examination of the optimization of the ten benchmark test functions, the CEC2020 test set, and the Wilcoxon rank sum test revealed that EBWO's optimization speed and convergence accuracy had significantly improved. To test the EBWO algorithm's practicality and feasibility, it was applied to solve engineering design problems involving speed reducers and pressure vessels. It was discovered through experimental comparative analysis that the EBWO algorithm had a certain degree of superiority in solving actual optimization problems.

Key words: beluga whale optimization, scramble beluga, Gaussian variation, convex lens imaging learning, engineering optimization

中图分类号: 

  • TP301.6
[1] 杜晓昕, 周薇, 王浩, 等. 智能算法的亚群优化策略综述[J]. 计算机应用, 2024, 44(3): 819-830. DU Xiaoxin, ZHOU Wei, WANG Hao, et al. Survey of subgroup optimization strategies for intelligent algorithms[J]. Journal of Computer Applications, 2024, 44(3): 819-830.
[2] 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化方法[J]. 计算机应用, 2024, 44(5):1386-1392. TIAN Ye, CHEN Jinjin, ZHANG Xingyi. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization[J]. Journal of Computer Applications, 2024, 44(5):1386-1392.
[3] 任洁, 彭建文. 求解多目标优化问题的邻近牛顿法[J]. 应用数学学报, 2022, 45(2): 222-237. REN Jie, PENG Jianwen. Proximal Newton methods for multiobjective optimization problems[J]. Acta Mathe-maticae Applicatae Sinica, 2022, 45(2): 222-237.
[4] 张林, 沈佳颖, 胡传陆, 等. 基于信噪比的学习型哈里斯鹰算法[J/OL]. 北京航空航天大学学报. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433 ZHANG Lin, SHEN Jiaying, HU Chuanlu, et al. Learning Haris hawks optimization agorithm with signal-to-noise rato[J/OL]. Journal of Beljing University of Aeronautics and Astronautics. 2024. https://doi.org/10.13700/j.bh.1001-5965.2023.0433
[5] BRAIK M S. Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems[J]. Expert Systems with Applications, 2021, 174: 114685.
[6] BENYAMIN A, SOLEIMANIAN G F, SEYEDALI M. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: 107408.
[7] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[8] SEYYEDABBASI A, KIANI F. Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems[J]. Engineering with Computers, 2023, 39(4): 2627-2651.
[9] 刘庆鑫, 齐琦, 贾鹤鸣, 等. 混合改进策略的阿奎拉鹰优化算法[J]. 山东大学学报(工学版), 2023, 53(4): 93-103. LIU Qingxin, QI Qi, JIA Heming, et al. Aquila optimizer based on hybrid improved strategies[J]. Journal of Shandong University(Engineering Science), 2023, 53(4): 93-103.
[10] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215.
[11] 梁天添, 王英东, 杨健雄, 等. 测量丢失下时滞惯性系统故障估计的优化鲁棒Kalman滤波[J].中国惯性技术学报, 2023, 31(6):627-636. LIANG Tiantian, WANG Yingdong, YANG Jianxiong, et al. Optimized robust Kalman filtering for fault estimation of time-delay inertial systems with missing measurement[J]. Journal of Chinese Inertial Tech-nology, 2023, 31(6):627-636.
[12] 汪业正午, 季亮, 常潇, 等. 故障下新能源场站间主动电压支撑协调控制策略[J]. 太阳能学报, 2023, 44(12): 560-567. WANG Yezhengwu, JI Liang, CHANG Xiao, et al. Active voltage support coordination control strategy between new energy field stations under failure[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 560-567.
[13] 孔云, 周学良, 冷杰武. 基于改进白鲸优化算法的低碳柔性工艺规划[J]. 现代制造工程, 2024(1): 80-88. KONG Yun, ZHOU Xueliang, LENG Jiewu. Low-carbon flexible process planning based on improved beluga whale optimization algorithm[J]. Modern Manufacturing Engineering, 2024(1): 80-88.
[14] 陈元健, 黄靖, 孙晓, 等. 基于BWO优化VMD联合小波阈值的管道泄漏次声波去噪方法[J]. 机电工程技术, 2024, 53(3): 54-59. CHEN Yuanjian, HUANG Jing, SUN Xiao, et al. Research on infrasound denoising method for pipeline leakage based on BWO optimized VMD joint wavelet thresholding[J]. Mechanical & Electrical Engineering Technology, 2024, 53(3): 54-59.
[15] JIA H M, WEN Q X, WU D, et al. Modified beluga whale optimization with multi-strategies for solving engineering problems[J]. Journal of Computational Design and Engineering, 2023, 10(6): 2065-2093.
[16] 陈心怡, 张孟健, 王德光. 基于Fuch映射的改进白鲸优化算法及应用[J]. 计算机工程与科学, 2024, 46(8): 1482-1492. CHEN Xinyi, ZHANG Mengjian, WANG Deguang. Improved beluga whale optimization algorithms based on Fuch mapping and applications[J]. Computer Engineering & Science, 2024, 46(8): 1482-1492.
[17] 王亚辉, 张虎晨, 王学兵, 等. 基于混沌反向学习和水波算法改进的白鲸优化算法[J]. 计算机应用研究, 2024, 41(3): 729-735. WANG Yahui, ZHANG Huchen, WANG Xuebing, et al. Improved beluga whale optimization algorithm based onchaotic inverse learning and water wave algorithm[J]. Application Research of Computers, 2024, 41(3): 729-735.
[18] 陈曦明, 张军伟. 融合FDB策略和切线飞行的改进白鲸优化算法[J]. 计算机时代, 2023(11): 46-51. CHEN Ximing, ZHANG Junwei. Improved BWO algorithm combining FDB strategy and tangent flight[J]. Computer Era, 2023(11): 46-51.
[19] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J].计算机工程与应用, 2023, 59(22): 92-110. PAN Jincheng, LI Shaobo, ZHOU Peng, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[20] 肖怡心, 刘三阳. 融合模式搜索的蝗虫优化算法及其应用[J]. 西安电子科技大学学报, 2024, 51(2): 137-156. XIAO Yixin, LIU Sanyang. Integration of pattern search into the grasshopper optimization algorithm and its applications[J]. Journal of Xidian University, 2024, 51(2): 137-156.
[21] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[22] KENNEDY J, EBERHART R. Particle swarm opti-mization[C] // Perth, Australia: IEEE, 1995, 4: 1942-1948.
[23] 向君幸, 吴永红. 基于邻域重心反向学习的混合樽海鞘群蝴蝶优化算法[J]. 计算机应用, 2023, 43(3): 820-826. XIANG Junxing, WU Yonghong. Hybrid salp swarm and butterfly optimization algorithm combined with neighborhood centroid opposition-based learning[J]. Journal of Computer Applications, 2023, 43(3): 820-826.
[1] 杨巨成,韩书杰,毛磊,代翔子,陈亚瑞. 胶囊网络模型综述[J]. 山东大学学报 (工学版), 2019, 49(6): 1-10.
[2] 方波,陈红梅. 一种新的双策略进化果蝇优化算法[J]. 山东大学学报 (工学版), 2019, 49(3): 22-31.
[3] 吴红岩,冀俊忠. 基于花授粉算法的蛋白质网络功能模块检测方法[J]. 山东大学学报(工学版), 2018, 48(1): 21-30.
[4] 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29.
[5] 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62.
[6] 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85.
[7] 邬慧敏,吴璟莉. 重建二倍体个体单体型的改进环基算法[J]. 山东大学学报(工学版), 2016, 46(4): 9-14.
[8] 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48.
[9] 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6.
[10] 文志强,朱文球,胡永祥. 半调图像的分类方法[J]. 山东大学学报(工学版), 2013, 43(4): 7-12.
[11] 徐姗姗,刘应安*,徐昇. 立体匹配中边界信息的强化算法[J]. 山东大学学报(工学版), 2012, 42(6): 43-49.
[12] 陈明志1,2, 陈健3, 许春耀3, 余轮3, 林柏钢1,2. 一种新的基于网络虚拟环境的用户访问模式聚类算法[J]. 山东大学学报(工学版), 2011, 41(6): 43-49.
[13] 吴天柱 . 基于RBF神经网络的彩色图像盲水印算法[J]. 山东大学学报(工学版), 2008, 38(2): 51-55 .
[14] 贾银亮,张焕春,经亚枝,刘 晶 . 6步直线生成算法[J]. 山东大学学报(工学版), 2007, 37(1): 61-64 .
[15] 张劲松,李歧强,王朝霞 . 基于混沌搜索的混和粒子群优化算法[J]. 山东大学学报(工学版), 2007, 37(1): 47-50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!