山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 100-110.doi: 10.6040/j.issn.1672-3961.0.2023.212
陈文举1,2,陈俐企1,2,包春波3,朱启银4,惠冰5,庄培芝1,2*
CHEN Wenju1,2, CHEN Liqi1,2, BAO Chunbo3, ZHU Qiyin4, HUI Bing5, ZHUANG Peizhi1,2*
摘要: 为了优化桥面流体加热系统的结构布设及运行参数设计,进一步提高融雪效能,基于COMSOL Multiphysics多物理场耦合仿真平台,以相变过程表征桥面雪层融化成水的过程,构建循环管道加热桥面融雪效能分析的三维计算模型。通过文献试验数据对新建数值模型的准确性进行验证,采用该模型模拟分析管道进口流体温度、地热管埋深、管间距、管直径、积雪层厚度以及流体温度沿程损失等因素对桥面无雪率、融雪速率和温度场分布的影响规律。模拟结果表明积雪层厚度超过0.04 m会显著降低热管融雪系统的融雪速率,管道进口流体温度的提升使得融雪速率的增长率逐渐减小,管内流体与桥面结构在热量传递过程中温差不断减小,表现出一种非线性的温度衰减效应。研究结果可为相关桥面流体加热系统的效能分析和优化设计提供数据支撑和技术参考。
中图分类号:
[1] 刘状壮, 季鹏宇, 张有为, 等. 基于可视化文献计量分析的道路除冰雪技术研究进展[J]. 冰川冻土, 2023,45(3):1180-1194. LIU Zhuangzhuang, JI Pengyu, ZHANG Youwei, et al. Research progress of road snow and ice removal technology based on visualized bibliometric analysis [J]. Journal of Glaciology and Geocryology, 2023, 45(3):1180-1194. [2] 谭忆秋, 张驰, 徐慧宁, 等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019,32(4):1-17. TAN Yiqiu, ZHANG Chi, XU Huining, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement [J]. China Journal of Highway and Transport, 2019, 32(4):1-17. [3] 刘凯, 王选仓, 王芳. 中外高速公路融雪化冰技术和方法[J]. 交通企业管理, 2009,24(8):73-74. LIU Kai, WANG Xuancang, WANG Fang. Chinese and foreign highway snow melting and ice melting technologies and methods[J]. Transportation Enterprise Management, 2009, 24(8): 73-74. [4] LIU K, HUANG S, JIN C, et al. Prediction models of the thermal field on ice-snow melting pavement with electric heating pipes[J]. Applied Thermal Engineering, 2017, 120:269-276. [5] GIULIANI F, MERUSI F, POLACCO G, et al. Effectiveness of sodium chloride-based anti-icing filler in asphalt mixtures[J]. Construction and Building Materials, 2012, 30:174-179. [6] EQUIZA M A, CALVO-POLANCO M, CIRELLI D, et al. Long-term impact of road salt(NaCl)on soil and urban trees in Edmonton, Canada[J]. Urban Forestry & Urban Greening, 2017, 21:16-28. [7] XU H N, TAN Y Q. Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids[J]. Energy, 2015, 80:666-676. [8] BOYD T L. New snow melt projects in Klamath Falls, OR[J]. Geo-Heat Center Quarterly Bulletin, 2003,24(3):12-15. [9] BRUN E. Investigation on wet-snow metamorphism in respect of liquid-water content[J]. Annals of Glaciology, 1989, 13:22-26. [10] LIU X, REES S J, SPITLER J D. Modeling snow melting on heated pavement surfaces: Part I: model development[J]. Applied Thermal Engineering, 2007, 27(5/6):1115-1124. [11] ZHAO W, WANG L, ZHANG Y, et al. Snow melting on a road unit as affected by thermal fluids in different embedded pipes[J]. Sustainable Energy Technologies and Assessments, 2021, 46:101221. [12] BALBAY A, ESEN M. Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks[J]. Scientific Research and Essays, 2010, 5(24):3955-3966. [13] HAN C, YU X B. Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: a simulation based analysis[J]. Renewable Energy, 2017, 101:214-224. [14] LIU X, REES S J, SPITLER J D. Modeling snow melting on heated pavement surfaces. part II: experimental validation[J]. Applied Thermal Engineering, 2007, 27(5/6):1125-1131. [15] WP C. Design of snow melting systems[J]. Heat Vent, 1952, 49:88-95. [16] WILLIAMS G P. Design heat requirements for embedded snow-melting systems in cold climates[J]. Transportation Research Record, 1976, 576:20-32. [17] KILKIS I B. Design of embedded snow-melting systems: Part 2: heat transfer in the slab: a simplified model[J]. ASHRAE Transactions, 1994, 100(1):434-441. [18] REES S J, SPITLER J D, XIAO X. Transient analysis of snow-melting system performance[J]. ASHRAE Transactions, 2002, 108(2):406-423. [19] WANG H, ZHAO J, CHEN Z. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water[J]. Energy Conversion and Management, 2008, 49(6):1538-1546. [20] XU H, TAN Y. Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids[J]. Energy, 2015, 80:666-676. [21] YU X, HURLEY M T, LI T, et al. Experimental feasibility study of a new attached hydronic loop design for geothermal heating of bridge decks[J]. Applied Thermal Engineering, 2020, 164:114507. [22] LIU Y P, DONG B, HONG T Z, et al. ASHRAE URP-1883: development and analysis of the ashraeglobal occupant behavior database[J]. Science and Technology for the Built Environment, 2023, 29(8):749-781. [23] ZHAO W, CHEN X, WANG W, et al. Numerical study on thermal performances of bare, circular and rectangular finned pipes for road heating[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140:1147-1157. [24] 徐慧宁. 流体加热道路融雪系统温-湿耦合融雪模型及仿真分析[D].哈尔滨:哈尔滨工业大学, 2012. XU Huining. Modelling and simulation analysis of fluid-heated road snow-melting system with temperature-wetness coupling[D]. Harbin: Harbin Institute of Technology, 2012. [25] 赵艳霞. 沥青混合料热膨胀系数的测量方法及影响因素研究[J]. 低碳世界, 2020,10(4):177-178. ZHAO Yanxia. Study on the measurement method and influencing factors of coefficient of thermal expansion of asphalt mixture[J]. Low Carbon World, 2020, 10(4):177-178. [26] 乔自磊, 钱欣童. 沥青混凝土物性参数特性研究[J]. 河南科技, 2014(12):71. QIAO Zilei, QIAN Xintong. Characterization of physical parameters of asphalt concrete[J]. Henan Science and Technology, 2014(12):71. [27] 陈占权, 李波, 任小遇, 等. 沥青混合料热膨胀系数的测量方法及影响因素确定[J]. 中外公路, 2019, 39(3):199-207. CHEN Zhanquan, LI Bo, REN Xiaoyu, et al. Measurement methods for coefficient of thermal expansion of asphalt mixtures and determination of influencing factors[J]. Journal of China & Foreign Highway, 2019, 39(3):199-207. [28] ZHAO W, WANG L, ZHANG Y, et al. Snow melting on a road unit as affected by thermal fluids in different embedded pipes[J]. Sustainable Energy Technologies and Assessments, 2021, 46:101221. [29] ZHAO W, LI L, WANG W, et al. Thermal performances of porous snow by a hydronic heating system at different weather conditions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141:1519-1528. |
[1] | 马川义,冯豪杰,蒋红光,侯天新,姚占勇,杨为民. 吸水土工布对路基湿度控制效果的数值模拟[J]. 山东大学学报 (工学版), 2024, 54(4): 141-149. |
[2] | 韩超,王彤,陈德文,孙恩赐,李平,吴则祥,周冲,庄培芝. 基于耦合欧拉-拉格朗日方法的砂土中静压桩挤土效应数值模拟[J]. 山东大学学报 (工学版), 2024, 54(2): 143-152. |
[3] | 王钰鑫,吕思忠,姚望,林春金,张明,李召峰,张健,王衍升. 粉质黏土地层桩侧劈裂注浆参数设计与效果评价[J]. 山东大学学报 (工学版), 2023, 53(6): 70-81. |
[4] | 张亚平,马唯婧,张宸硕,肖辉,张一鸣. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报 (工学版), 2023, 53(6): 122-130. |
[5] | 宋洋,罗志恒,张波,张宇,朱敏. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报 (工学版), 2023, 53(5): 121-131. |
[6] | 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30. |
[7] | 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121. |
[8] | 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59. |
[9] | 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99. |
[10] | 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78. |
[11] | 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213. |
[12] | 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108. |
[13] | 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79. |
[14] | 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92. |
[15] | 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41. |
|