山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 143-152.doi: 10.6040/j.issn.1672-3961.0.2023.050
• 土木工程 • 上一篇
韩超1,王彤2,陈德文1,孙恩赐3,李平1,吴则祥4,周冲5,庄培芝3*
HAN Chao1, WANG Tong2, CHEN Dewen1, SUN Enci3, LI Ping1, WU Zexiang4, ZHOU Chong5, ZHUANG Peizhi3*
摘要: 为探讨砂土地基中静压桩沉桩过程的挤土效应,引入Simsand砂土临界状态本构模型,采用耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)方法,模拟分析了砂土中静压沉桩过程的挤土效应。基于相关试验数据校定本构模型参数,利用模拟离心机沉桩试验,验证数值模型的准确性。结果表明,挤土效应的影响区域直径随着桩尖角度和砂土相对密度的增大而增大,压入过程中,平底桩的挤土效应倾向于竖向向前,增大了土体阻力。桩基压入引起近地表土层发生隆起,密砂地层的隆起较松砂地层显著。随着深度增加,桩周土体的竖向位移由隆起变为向下移动,且趋于稳定,密砂中发生的侧向位移大于松砂地层。挤土效应的影响区域直径随桩端竖向向下方向迅速衰减,随桩端竖向向上方向发生小幅度减小,在密砂中沿径向方向呈现先增大后减小的趋势。
中图分类号:
[1] FAN S, BIENEN B, RANDOLPH M F. Effects of monopile installation on subsequent lateral response in sand. I: pileinstallation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(5):04021021. [2] 李雨浓, 张亚伟, 刘亚辉, 等. 层状地基静压开口管桩的挤土效应研究[J]. 建筑结构, 2021, 51(15): 115-123. LI Yunong, ZHANG Yawei, LIU Yahui, et al. Study on soil squeezing effect of open-ended jacked pipe pile in layered ground[J].Building Structure, 2021, 51(15): 115-123. [3] 张海洋, 刘润, 贾沼霖. 自升式平台插桩对邻近平台桩基础的影响研究[J]. 岩土工程学报, 2021, 43(5): 867-876. ZHANG Haiyang, LIU Run, JIA Zhaolin. Investigation of effect of spudcan penetration on adjacent platform piles[J].Chinese Journal of Geotechnical Engineering, 2021, 43(5): 867-876. [4] 刘雪颖, 王永洪, 张明义, 等. 静压桩沉桩过程中贯入机理理论研究进展[J]. 工程地质学报, 2020, 30(2): 1-13. LIU Xueying, WANG Yonghong, ZHANG Mingyi, et al. Advances in the theoretical research on the penetration characteristics of jacked piles[J].Journal of Engineering Geology, 2020, 30(2): 1-13. [5] SAGASETA C, WHITTLE A J. Prediction of ground movements due to Pile driving in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 55-66. [6] KLUGER M O, KREITER S, STäHLER F T, et al. Cone penetration tests in dry and saturated Ticino sand[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 4079-4088. [7] WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering [J]. Computers and Geotechnics, 2015, 65: 104-114. [8] 罗战友, 龚晓南, 王建良, 等. 静压桩挤土效应数值模拟及影响因素分析[J]. 浙江大学学报(工学版), 2005, 39(7): 992-996. LUO Zhanyou,GONG Xiaonan, WANG Jianliang, et al. Numerical simulation and factor analysisof jacked pile compacting effects[J]. Journal of Zhejiang University(Engineering Science), 2005, 39(7): 992-996. [9] 顾美湘. 筋箍碎石桩复合地基承载变形特性的三维离散元和模型试验研究[D]. 长沙:湖南大学, 2017. GU Meixiang, Three-dimensional DEM analysis and model tests on geosyntheticencased stone columns [D]. Changsha: Hunan University, 2017. [10] LORENZO R, DA CUNHA R, CORDãO NETO M, et al. Numerical simulation of installation of jacked piles in sand usingmaterial point method [J]. Canadian Geotechnical Journal, 2018, 55(1): 131-146. [11] 秦伟. 海上风电大直径开口钢管桩锤击贯入过程研究[D].南京:东南大学, 2020. QIN Wei. Impacted penetration progress researches of large-diameter open-ended steel pipe pile applied in oddshore wind faem[D]. Nanjing: Southeast Univer-sity, 2020. [12] 吴亚军, 雷胜友. 静压桩挤土效应数值模拟[J]. 河南城建学院学报, 2019, 28(1): 33-40. WU Yajun, LEI Shengyou. Numerical simulation of compaction effects of jacked pile[J]. Journal of Henan University of Urban Construction, 2019, 28(1): 33-40. [13] QIU G, GRABE J. Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay[J]. Canadian Geotechnical Journal, 2012, 49(12): 1393-1407. [14] TOLOOIYAN A, GAVIN K. Modelling the cone penetration test in sand using cavity Eexpansion and arbitrary lagrangian eulerian finite element methods[J]. Computers and Geotechnics, 2011, 38(4): 482-890. [15] YANG Z X, GAO Y Y, JARDINE R J, et al.Large deformation finite-element simulation of displacement-pile installation experiments in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020044. [16] 吴则祥, 金银富, 季慧, 等. 易破碎砂土地基中“平底桩”贯入数值模拟分析[J]. 岩土力学, 2017, 38(增刊2): 330-336. WU Zexiang, JIN Yinfu, JI Hui, et al. Numerical simulation analysis of flat bottom pile drived into foundation ofeasily crushable sand[J].Rock and Soil Mechanics, 2017, 38(Suupl.2): 330-336. [17] STAUBACH P, MACHACEK J, MOSCOSO M C, et al. Impact of the installation on the long-term cyclic behaviour of piles in sand: a numerical study[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106223. [18] 孙肖菲, 王树青, 陈旭光, 等. 基于ALE、CEL法的管土垂向相互作用数值模拟对比分析[J]. 江苏科技大学学报(自然科学版), 2019, 33(2): 1-8. SUN Xiaofei, WANG Shuqing, CHEN Xuguang, et al. Comparison of numerical simulations of the vertical pipe- soil interactionbased on CEL and ALE algorithms[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(2): 1-8. [19] 张兆德, 张心, 李俊来. 基于CEL和ALE方法的自升式平台桩基贯入过程瞬态研究[J]. 船海工程, 2015, 44(2): 149-153. ZHANG Zhaode, ZHANG Xin, LI Junlai. Transient study of jack-up pile foundation penetration process based on CEL and ALE methods[J]. Ship and Ocean Engineering, 2015, 44(2): 149-153. [20] STAUBACH P, MACHACEK J, WICHTMANN T. Large-deformation analysis of pile installation with subsequent lateral loading: Sanisand vs. Hypoplasticity[J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 106964. [21] NOH W F. CEL: A time-dependent, two-space-dimensional, coupled eulerian-lagrange code[C] //Methods in Computational Physics 3. New York, USA: Academic Press,1964. [22] SYSTEMES D. ABAQUS analysis user's manual[M]. version 2016. Maastricht, the Netherlands: AOSS, 2016. [23] 闫澍旺, 霍知亮. 岩土工程下沉贯入数值模拟方法研究进展[J]. 力学与实践, 2016, 38(3): 237-49. YAN Shuwang, HUO Zhiliang. Advance in numerical simulation methods for penetration in geotechnical engineering[J]. Mechanics in Engineering, 2016, 38(3): 237-49. [24] 魏丽敏, 李双龙, 杜猛, 等. 基于CEL法的静压管桩挤土效应数值分析[J]. 华南理工大学学报(自然科学版), 2021, 49(4): 28-38. WEI Limin, LI Shuanglong, DU Meng, et al. Numerical analysis of soil squeezing effect of static pressure pipe pile based on CEL method[J]. Journal of South China University of Technology(Natural Science Edition), 2021, 49(4): 28-38. [25] OSTHOFF D, GRABE J. Deformational behaviour of steel sheet piles during jacking[J]. Computers and Geotechnics, 2018, 101: 1-10. [26] QIU G, HENKE S, GRABE J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations[J]. Computers and Geotechnics, 2010, 38(1): 30-39. [27] WU Z X, YIN Z Y, JIN Y F, et al. A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[J]. European Journal of Environmental and Civil Engineering, 2019, 23(12): 1444-1466. [28] BEEN K, JEFFERIES M G. A state parameter for sands [J]. Géotechnique, 1985, 35(2): 99-112. [29] 彭芳乐, CHATTONJAI P, 华针. 基于Abaqus软件的砂土弹塑性本构实现及验证[J]. 同济大学学报(自然科学版), 2014, 42(3): 370-376. PENG Fangle, CHATTONJAI P, HUA Zhen. Implementation and validation of elasto-plastic constitutive of sands by Abaqus tool[J]. Journal of Tongji University(Natural Science), 2014, 42(3): 370-376. [30] 陈洲泉, 陈湘生, 庞小朝. 砂土临界状态模型的隐式积分算法在有限元分析中实现[J]. 岩土力学, 2021, 42(8): 2279-2286. CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao.An implicit integration algorithm for implementing the critical-state sand modelinto the finite element analysis [J]. Rock and Soil Mechanics, 2021, 42(8): 2279-2286. [31] 王子珺, 赵伯明. 砂土统一本构模型研究及其三维数值实现[J]. 工程力学, 2021, 38(10): 181-187. WANG Zijun, ZHAO Boming. The Unified sand model and 3D numerical implementation[J]. Engineering Mechanics, 2021, 38(10): 181-187. [32] FIORAVANTE V, GIRETTI D. Unidirectional cyclic resistance of Ticino and Toyoura sands from centrifuge cone penetration tests [J]. Charles University, 2016, 11(4): 953-968. [33] NORIHIKO M, HIDEKAZU M, NORIYUKI Y. Stress-strain characteristics of sand in a particle-crushing region [J]. Journal of the Japanese Society of Soil Mechanics & Foundation Engineering, 1984, 24(1): 77-89. [34] GHAFGHAZI M, SHUTTLE D. Interpretation of sand state from cone penetration resistance[J]. Géotechnique, 2008, 58(8): 623-634. [35] 吴则祥, 陈佳莹, 尹振宇. 考虑各向异性及循环效应的SIMSAND模型及应用[J]. 岩石力学与工程学报, 2021, 40(10): 2113-2123. WU Zexiang, CHEN Jiaying, YIN Zhenyu. A SIMSAND model considering anisotropy and dynamic effects and its application[J].Chinese Journal of Rock Mechanics and Engineering, 2021, 40(10): 2113-2123. [36] 戴笑如, 王建华, 范怡飞. 钻井船插桩CEL数值模拟中的若干问题分析[J]. 岩土力学, 2018, 39(6): 2278-2286. DAI Xiaoru, WANG Jianhua,FAN Yifei. lssues of numerical simulation of the spudcan penetration based on CEL method[J]. Rock and Soil Mechanics, 2018, 39(6): 2278-2286. [37] 王海刚, 白晓宇, 张明义, 等. 静压桩沉桩阻力现场试验与数值模拟分析[J]. 山东农业大学学报(自然科学版), 2021, 52(1): 91-97. WANG Haigang, BAI Xiaoyu, ZHANG Mingyi, et al. Field test and numerical simulation analysis on the penetration resistance of jacked pile[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2021, 52(1): 91-97. [38] 周健, 陈小亮, 周凯敏, 等. 静压开口管桩沉桩过程模型试验及数值模拟[J]. 岩石力学与工程学报, 2010, 29(2): 3839-3846. ZHOU Jian, CHEN Xiaoliang, ZHOU Kaimin, et al. Model test and numerical simulation of driving process of open-ended jacked pipe piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 3839-3846. [39] QIU G, HENKE S, GRABE J. Applications of coupled eulerian-lagrangian method to geotechnical problems with large deformations[C] // SIMULIA Customer Conference. London, UK: IEEE, 2009. [40] WUZexiang. Mechanical modelling of sand considering simple shear condition and its application to pile foundation[D]. Nantes, USA: Ecole Centrale de Nantes, 2017. [41] DURGUNOGLU H T, MITCHELL J K. Static penetration resistance of soils[R]. Washington, USA: Research Report for NASA Headquarters, 1973. [42] MO Pinqiang. Centrifuge modelling and analytical solutions for the cone penetration test in layered soils[D]. Nottingham, England: University of Nottingham, 2014. [43] JARDINE R J, ZHU B T, FORAY P, et al. Interpretation of stress measurements made around closed-ended displacement piles in sand[J]. Géotechnique, 2013, 63(8): 613-627. [44] LEHANE B M, WHITE D J. Friction fatigue on displacement piles in sand [J]. Geotechnique, 2004, 54(10): 645-658. [45] YANG Z, JARDINE R, ZHU B, et al. Sand grain crushing and interface shearing during displacement pile installation in sand[J]. Géotechnique, 2010, 60(6): 469-482. [46] WHITE D J, LEHANE B M. Friction fatigue on displacement piles in sand[J]. Geotechnique, 2004, 54(10): 645-658. |
[1] | 张亚平,马唯婧,张宸硕,肖辉,张一鸣. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报 (工学版), 2023, 53(6): 122-130. |
[2] | 王钰鑫,吕思忠,姚望,林春金,张明,李召峰,张健,王衍升. 粉质黏土地层桩侧劈裂注浆参数设计与效果评价[J]. 山东大学学报 (工学版), 2023, 53(6): 70-81. |
[3] | 宋洋,罗志恒,张波,张宇,朱敏. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报 (工学版), 2023, 53(5): 121-131. |
[4] | 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30. |
[5] | 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121. |
[6] | 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99. |
[7] | 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59. |
[8] | 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78. |
[9] | 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213. |
[10] | 李尧,李嘉评,韩宽. 单剪试验试样应力状态与破坏模式[J]. 山东大学学报 (工学版), 2022, 52(4): 201-209. |
[11] | 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79. |
[12] | 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108. |
[13] | 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92. |
[14] | 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41. |
[15] | 庄培芝,张营超,宋修广,杨鹤,郭志成,胡岩. 考虑尺寸效应的桩侧摩阻力修正计算方法[J]. 山东大学学报 (工学版), 2021, 51(5): 8-15. |
|