您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 111-120.doi: 10.6040/j.issn.1672-3961.0.2023.299

• 土木工程 • 上一篇    

基于正交设计的废食用油组分基沥青再生剂性能

万贵稳1,潘军凯2,陈美祝3,王雪霞2,张吉哲4*,苏衍岭5   

  1. 1.山东建筑大学材料科学与工程学院, 山东 济南 250101;2.山东东青公路有限公司, 山东 东营 257092;3.武汉理工大学硅酸盐建筑材料国家重点实验室, 湖北 武汉 430070;4.山东大学齐鲁交通学院, 山东 济南 250002;5.菏泽市公路事业发展中心, 山东 菏泽 274000
  • 发布日期:2024-12-26
  • 作者简介:万贵稳(1993— ),女,山东曹县人,实验师,硕士,主要研究方向为道路建筑材料、废旧沥青路面的再生. E-mail: 13964@sdjzu.edu.cn. *通信作者简介:张吉哲(1987— ),男,山东济南人,副研究员,硕士生导师,博士,主要研究方向为沥青混合料细观力学、新型路面材料、废旧路面材料再生利用等. E-mail: jizhe.zhang@sdu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFB2603300,2022YFB2603303)

Performance of waste cooking oil-based asphalt rejuvenators based on orthogonal design

WAN Guiwen1, PAN Junkai2, CHEN Meizhu3, WANG Xuexia2, ZHANG Jizhe4*, SU Yanling5   

  1. 1. School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China;
    2. Shandong Dongqing Highway Co., Ltd., Dongying 257092, Shandong, China;
    3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China;
    4. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    5. Heze Highway Development Center, Heze 274000, Shandong, China)Symbol`@@
  • Published:2024-12-26

摘要: 针对废食用油来源和质量不稳定等问题,进行基于废食用油组分分离、多组分复合改性沥青再生剂设计与性能调控。采用相对分子量分级技术将废食用油过滤、精馏,获取不同相对分子量的3种组分,并添加增塑剂、增黏树脂、抗老化剂制备废食用油组分基沥青再生剂,通过正交试验确定不同黏度水平再生剂的最优材料配比。对再生剂热稳定性和微观性能及再生沥青的流变性能进行综合分析,结果表明:相对分子量等级是影响再生剂活化能的主要因素,随着相对分子量增大,再生剂热稳定性增强;再生剂的红外特征峰位置一致,峰强度存在一定差异,轻质组分和中质组分再生剂的芳香分特征峰面积是重质组分再生剂的2倍;最佳质量分数下再生沥青的复数模量大于基质沥青,相位角小于基质沥青,再生沥青的流变性能优于基质沥青;再生沥青的低温连续分级温度低于基质沥青,低温连续分级温度随废食用油组分相对分子量的增大而升高。

关键词: 沥青, 废食用油, 再生剂, 热稳定性, 流变性

中图分类号: 

  • U414
[1] JAIN S, CHANDRAPPA A. Critical review on waste cooking oil rejuvenation in asphalt mixture with high recycled asphalt[J]. Environmental Science and Pollution Research, 2023, 30(32): 77981-78003.
[2] LÜ S T, LIU J, PENG X H, et al. Rheological and microscopic characteristics of bio-oil recycled asphalt[J]. Journal of Cleaner Production, 2021, 295: 126449.
[3] CAI Z Y, LIU Q, CAO S X. Real estate supports rapid development of China's urbanization[J]. Land Use Policy, 2020,95: 104582.
[4] FANG Y, ZHANG Z Q, YANG J H, et al. Composition design of waste vegetable oil-based rejuvenator based on RSM and performance evaluation of rejuvenated asphalt[J]. Journal of Materials in Civil Engineering, 2022(7): 34.
[5] FANG Y, ZHANG Z Q, SHI J R, et al. Insights into permeability of rejuvenator in old asphalt based on permeation theory: permeation behaviors and micro characteristics[J]. Construction and Building Materials, 2022, 325: 126725.
[6] YANG C, ZHANG J W, YANG F, et al. Multi-scale performance evaluation and correlation analysis of blended asphalt and recycled asphalt mixtures incorporating high RAP content[J]. Journal of Cleaner Production, 2021, 317: 128278.
[7] 刘启征, 李传强, 凌天清, 等. 生物柴油再生沥青胶结料性能[J]. 科学技术与工程, 2022,22(33): 14891-14897. LIU Qizheng, LI Chuanqiang, LING Tianqing, et al. Properties of biodiesel recycled asphalt binder[J]. Science Technology and Engineering, 2022, 22(33): 14891-14897.
[8] LI D, DING Y J, WANG J J, et al. Multiscale molecular simulations on the rejuvenation of recycled asphalt mixture: an insight into molecular impact of rejuvenators in aged asphalt binders[J]. Journal of Cleaner Production, 2023, 414: 137621.
[9] ZHAO Y C, CHEN M Z, WU S P, et al. Full-component cascade utilization of waste cooking oil in asphalt materials[J]. Construction and Building Materials, 2023, 404: 133355.
[10] ANTUNES V, FREIRE A, NEVES J. A review on the effect of RAP recycling on bituminous mixtures properties and the viability of multi-recycling[J]. Construction and Building Materials, 2019, 211: 453-469.
[11] GRILLI A, GNISCI M, BOCCI M. Effect of ageing process on bitumen and rejuvenated bitumen[J]. Construction and Building Materials, 2017, 136: 474-481.
[12] WANG C, XUE L, XIE W, et al. Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil[J]. Construction and Building Materials, 2018,167: 348-358.
[13] GUO M, LIANG M C, LIU H Q, et al. Optimization and validation of waste bio-oil based high-performance rejuvenator for rejuvenating aged bitumen[J]. Materials and Structures, 2023, 56: 99.
[14] ZHANG X T, CHEN M Z, ZHAO Y C, et al. Influence of macromolecular substances in waste cooking oil on rejuvenation properties of asphalt with different aging degrees[J]. Construction and Building Materials, 2022,361: 129522.
[15] YAN K Z, LAN H Z, DUAN Z, et al. Mechanical performance of asphalt rejuvenated with various vegetable oils[J]. Construction and Building Materials, 2021, 293: 123485.
[16] 罗浩原, 黄晓明. 废油再生沥青二次老化后的性能与组分变化[J]. 中国公路学报, 2021, 34(10): 98-110. LUO Haoyuan, HUANG Xiaoming. Research on change of performance and component of recycled oil regenerated asphalt during secondary aging[J]. China Journal of Highway and Transport, 2021, 34(10): 98-110.
[17] OLDHAM D, RAJIB A, DANDAMUDI K P R, et al. Transesterification of waste cooking oil to produce a sustainable rejuvenator for aged asphalt[J]. Resources, Conservation and Recycling, 2021, 168: 105297.
[18] LI H B, ZHANG F, FENG Z X, et al. Study on waste engine oil and waste cooking oil on performance improvement of aged asphalt and application in reclaimed asphalt mixture[J]. Construction and Building Materials, 2021, 276: 122138.
[19] 汪海年, 徐宁, 陈玉, 等. 生物油再生老化沥青材料研究进展[J]. 中国公路学报, 2023, 36(5): 1-20. WANG Hainian, XU Ning, CHEN Yu, et al. Advances in bio-oil regenerated aged asphalt materials[J]. China Journal of Highway and Transport, 2023, 36(5): 1-20.
[20] XU N, WANG H, WANG H, et al. Research progress on resource utilization of waste cooking oil in asphalt materials: a state-of-the-art review[J]. Journal of Cleaner Production, 2023, 385: 135427.
[21] 中华人民共和国交通运输部. 公路工程沥青及沥青混合料试验规程:JTG E20—2011[S]. 北京:人民交通出版社, 2011.
[22] 中华人民共和国交通运输部. 公路沥青路面再生技术规范:JTG/T 5521—2011[S]. 北京:人民交通出版社, 2019.
[23] 王枫成. 增塑剂对苯乙烯-丁二烯-苯乙烯改性沥青低温性能的影响[J]. 科学技术与工程, 2022, 22(5): 2002-2008. WANG Fengcheng. Influence ofplasticizer on low temperature performance of SBS modified asphalt[J]. Science Technology and Engineering, 2022, 22(5): 2002-2008.
[24] 董昭, 徐书东, 柳久伟, 等. 不同类型温拌剂对沥青性能影响[J]. 山东大学学报(工学版), 2023,53(1): 18-24. DONG Zhao, XU Shudong, LIU Jiuwei, et al. Effect of different types of warm mix agents on asphalt properties[J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 18-24.
[1] 孙腾云,丁万涛,王承震,于文端,王志成,郭文静. 泥水盾构隧道用新型环保泥浆及流变性质[J]. 山东大学学报 (工学版), 2024, 54(6): 82-88.
[2] 董昭,徐书东,柳久伟,戚哲前,马士杰,符东绪. 不同类型温拌剂对沥青性能影响[J]. 山东大学学报 (工学版), 2023, 53(1): 18-24.
[3] 张吉哲,刚子璇,毕玉峰,岳红亚,徐润,丁婷婷,齐仕杰. 基于有机-无机改性的赤泥沥青混合料综合性能[J]. 山东大学学报 (工学版), 2023, 53(1): 1-10.
[4] 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38.
[5] 郭豪彦,王振军,张海宝,史文涛,况栋梁. 多因素作用下水泥乳化沥青胶浆性能特征及机理[J]. 山东大学学报 (工学版), 2023, 53(1): 25-31.
[6] 姚玉权,黄伯承,宋亮,张建,仰建岗,高杰. 多来源RAP下RHMA材料组成的动态控制策略[J]. 山东大学学报 (工学版), 2022, 52(6): 79-88.
[7] 陈龙,支鹏飞,李晋,陈宏斌,何兆益,崔新壮. 新旧沥青界面融合实测与耗散粒子动力学模拟[J]. 山东大学学报 (工学版), 2022, 52(3): 61-69.
[8] 赵之仲,柳泓哲,刘桂强,杨振宇. ATB柔性基层与半刚性基层的层间抗剪规律[J]. 山东大学学报 (工学版), 2019, 49(3): 57-62.
[9] 郭德栋,张圣涛,李晋,张龙,张习斌. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52.
[10] 崔青,张长桥,修建新,许士明,卢丽丽. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47(2): 123-130.
[11] 崔新壮,黄丹,刘磊,蓝日彦,吕海波,赵艳林,曹卫东,常成利. 沥青路面病害力学研究进展[J]. 山东大学学报(工学版), 2016, 46(5): 68-87.
[12] 王海朋,张蓉,张晓华,毛成,周水文. 沥青砂动态剪切蠕变特性[J]. 山东大学学报(工学版), 2016, 46(4): 68-75.
[13] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
[14] 姚占勇,韩杰*,商庆森,葛智,张晓萌,崔衡. 碳纤维石墨导电沥青砂浆压敏性能研究[J]. 山东大学学报(工学版), 2013, 43(1): 80-85.
[15] 郭银涛1, 2,刘清泉2,刘振清3,王松根3. 基于改性乳化沥青-水泥双胶结料的半柔性再生混合料性能研究[J]. 山东大学学报(工学版), 2012, 42(3): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!