您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 61-69.doi: 10.6040/j.issn.1672-3961.0.2020.407

• • 上一篇    

新旧沥青界面融合实测与耗散粒子动力学模拟

陈龙1,支鹏飞2,李晋1,陈宏斌2,何兆益3,崔新壮4   

  1. 1.山东交通学院交通土建工程学院, 山东 济南 250357;2.甘肃省交通科学研究院集团有限公司, 甘肃 兰州 730030;3.重庆交通大学土木工程学院, 重庆 400074;4.山东大学土建与水利学院, 山东 济南 250061
  • 发布日期:2022-06-23
  • 作者简介:陈龙(1989— ),男,山东济南人,博士,讲师,主要研究方向为沥青路面新型材料研发与力学模型性能评价. E-mail: hellolong0701@163.com
  • 基金资助:
    “十三五”国家重点研发项目(2018YFB1600100);国家自然科学基金面上项目(51978116);山东省自然科学基金项目(ZR2020QE274);山东省交通运输厅科技计划项目(2019B63,2020B93,2021B11);山东交通学院博士科研启动基金项目(50004945,50004946)

Measurement and dissipative particle dynamics simulation of interface diffusion between virgin and aged asphalt

CHEN Long1, ZHI Pengfei2, LI Jin1, CHEN Hongbin2, HE Zhaoyi3, CUI Xinzhuang4   

  1. 1. School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, Shandong, China;
    2. Gansu Provincial Transportation Research Institute Group Co., Ltd., Lanzhou 730030, Gansu, China;
    3. College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
    4. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2022-06-23

摘要: 为扩充新旧沥青界面再生融合特征的研究手段,多尺度量化剖析新旧沥青界面再生融合速率、融合程度等行为参数,通过动态剪切流变试验,基于细观尺度实测研究新旧沥青界面再生融合规律;通过耗散粒子动力学,基于介观尺度模拟研究新旧沥青界面再生融合机理行为并验证动态剪切流变试验实测结果。分析表明:加热温度、加热时间均与新旧沥青界面再生融合程度呈正相关关系,加热温度与新旧沥青界面再生融合速率呈线性正相关关系,加热时间与新旧沥青界面再生融合速率呈指数负相关关系;加热时间从10~120 min,沥青界面扩散激活能增长了3~5倍;采用新添沥青单一调和的方式再生效果不佳,各试验条件下沥青界面再生融合程度均不足50%,但采用新添沥青与再生剂复合的方式,新旧沥青界面再生融合程度提升2倍左右,并同比降低沥青界面扩散激活能10%~30%;剪切速率可较大幅度影响新旧沥青界面再生融合作用,并且相比于较高加热温度(358~418 K),在低温加热条件下(298~358 K)适当增加剪切速率对改善新旧沥青界面再生融合特征效果更明显;采用的沥青四组分分子结构模型、构建的耗散粒子动力学粗粒化结构模型和选取的模拟计算参数为跨尺度拓展量化表征新旧沥青界面再生融合行为特征与规律提供重要支撑。

关键词: 新旧沥青界面, 动态剪切流变测试, 耗散粒子动力学模拟, 界面融合速率, 界面融合程度, 扩散激活能

中图分类号: 

  • U414
[1] 蔡全辉. 废旧沥青混合料厂拌热再生应用问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. CAI Quanhui. Application study on hot in-plant recycling technology of waste asphalt mixture[D]. Harbin: Harbin Institute of Technology, 2013.
[2] 耿九光. 沥青老化机理及再生技术研究[D]. 西安: 长安大学, 2009. GENG Jiuguang. Research of the mechanism of asphalt aging and regeneration technology[D]. Xi'an: Chang'an University, 2009.
[3] 季节,索智,许鹰,等. SMA温拌再生沥青混合料性能试验[J]. 中国公路学报, 2013, 26(5):28-33. JI Jie, SUO Zhi, XU Ying, et al. Experimental research on performance of warm-recycled mixture asphalt with SMA[J]. China Journal of Highway and Transport, 2013, 26(5): 28-33.
[4] 李进. 沥青再生剂扩散行为及其影响因素研究[D]. 北京: 中国石油大学, 2010. LI Jin. Study on the diffusion behavior of asphalt rejuvenator and influence factors[D]. Beijing: China University of Petroleum, 2010.
[5] SALVATORE M, HERVE D B, CEDRIC S, et al. New method to obtain viscoelastic properties of bitumen blends from pure and reclaimed asphalt pavement binder constituents[J]. Road Materials and Pavement Design, 2014, 15(2): 312-329.
[6] NAVARO J, BRUNEAU D, DROUADAINE I, et al. Analyzing the influence of manufacturing conditions of reclaimed asphalt concrete on the characteristics of the asphalt binder: development of a gradual binder extraction method[J]. The European Physical Journal:Applied Physics, 2012, 58(2): 1-14.
[7] BENJAMIN F B, HUANG B S, SHU X, et al. Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR[J]. Construction and Building Materials, 2014, 50: 517-523.
[8] MOHAJERI M, MOLENAAR A, VAN V. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nano-indentation and nano-computed tomography[J]. Road Materials and Pavement Design, 2014, 15(2): 372-384.
[9] RINALDINI E, SCHUETZ P, PARTL M N, et al. Investigating the blending of reclaimed asphalt with virgin materials using rheology, electron microscopy and computer tomography[J]. Composites: Part B, 2014, 67: 579-587.
[10] ZHAO S. Blending issues of hot and warm mix asphalt containing recycled asphalt pavement and recycled asphalt shingle[D]. Knoxville, America: the University of Tennessee, 2015.
[11] DAVIDE L P, ANA J B, GORDON A, et al. Towards 100% recycling of reclaimed asphalt in road surface courses: binder design methodology and case studies[J]. Journal of Cleaner Production, 2016, 131: 43-51.
[12] XU G J, WANG H, SUN W. Molecular dynamics study of rejuvenator effect on RAP binder: diffusion behavior and molecular structure[J]. Construction and Building Materials, 2018, 158: 1046-1054.
[13] DING Y J, HUANG B S, SHU X. Utilizing fluorescence microscopy for quantifying mobilization rate of aged asphalt binder[J]. Journal of Materials in Civil Engineering, 2017, 29(12): 1-8.
[14] DING Y J, HUANG B S, SHU X. Blending efficiency evaluation of plant asphalt mixtures using fluorescence microscopy[J]. Construction and Building Materials, 2018, 161: 461-467.
[15] 杨毅文,马涛,卞国剑,等. 老化沥青热再生有效再生率检测方法[J]. 建筑材料学报, 2011, 14(3): 25-32. YANG Yiwen, MA Tao, BIAN Guojian, et al. Proposed testing procedure for estimation of effective recycling ratio of aged asphalt in hot recycling technical conditions[J]. Journal of Building Materials, 2011, 14(3): 25-32.
[16] 秦永春,黄颂昌,徐剑,等. 厂拌温再生沥青混合料中新旧沥青的融合性研究[J]. 公路交通科技, 2015, 32(12): 24-28. QIN Yongchun, HUANG Songchang, XU Jian, et al. Research of blending performance of virgin and reclaimed asphalt in plant warm recycled asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(12): 24-28.
[17] 许勐. 基于分子动力学模拟的沥青再生剂扩散机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2015. XU Meng. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamic simulation[D]. Harbin: Harbin Institute of Technology, 2015.
[18] 陈龙,何兆益,陈宏斌,等. 新-旧沥青界面再生流变特征及分子动力学模拟研究[J]. 中国公路学报, 2019, 32(3): 1-9. CHEN Long, HE Zhaoyi, CHEN Hongbin, et al. Rheological characteristics and molecular dynamic simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 1-9.
[19] 李永翔,郝培文,雷宇,等. 微波敏感型沥青再生剂的开发及作用机理分析[J]. 北京工业大学学报, 2018, 44(1): 80-87. LI Yongxiang, HAO Peiwen, LEI Yu, et al. The development of microwave sensitive asphalt rejuvenate agent and its mechanism analysis[J]. Journal of Beijing University of Technology, 2018, 44(1): 80-87.
[20] 俞志龙. 厂拌热再生沥青混合料路用性能及施工工艺研究[D]. 重庆: 重庆交通大学, 2013. YU Zhilong. Research on the pavement performance and construction technology of hot mix plant recycling[D]. Chongqing: Chongqing Jiaotong University, 2013.
[21] 刘朝晖, 高新文, 翟龙, 等. 再生沥青中新旧沥青扩散特性[J]. 长安大学学报(自然科学版), 2018, 38(5): 18-24. LIU Zhaohui, GAO Xinwen, ZHAI Long, et al. Diffusion characteristics of aged and virgin asphalt in reclaimed asphalt[J]. Journal of Chang'an University(National Science Edition), 2018, 38(5): 18-24.
[22] 赵丽倩. 基于耗散粒子动力学下油水乳状液界面行为介观尺度的模拟研究[D]. 大庆: 东北石油大学, 2015. ZHAO Liqian. Study on the mesoscopic scale of the oil-water emulsion interface behavior based on dissipative particle dynamics[D]. Daqing: Northeast Petroleum University, 2015.
[23] 焦贵省. 嵌段共聚物及高分子纳米复合物结构和动力学的计算机模拟研究[D]. 长春: 吉林大学, 2017. JIAO Guisheng. A computer simulation study of structure and dynamics of block copolymers and polymer nanocomposites[D]. Changchun: Jilin University, 2017.
[24] 孙红, 于东旭, 王瑞宙, 等. 水在Nafion膜中扩散行为介观分析[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(2): 330-336. SUN Hong, YU Dongxu, WANG Ruizhou, et al. Mesoscopic analysis of diffusion behavior of water in nafion membrane[J]. Journal of Shenyang Jianzhu University(Natural Science), 2017, 33(2): 330-336.
[25] SONG X Y, ZHAO S L, DUAN M. Dissipative particle dynamics study on the aggregation behavior of asphaltenes under shear fields[J]. Industrial & Engineering Chemistry Research, 2016, 55: 9077-9086.
[1] 张磊,肖溟,王磊,崔新壮,孙连勇,黄丹,苏俊伟. 废旧轮胎片体-风化料混合物压实特性的试验研究[J]. 山东大学学报 (工学版), 2018, 48(5): 118-123.
[2] 王海朋,张蓉,张晓华,毛成,周水文. 沥青砂动态剪切蠕变特性[J]. 山东大学学报(工学版), 2016, 46(4): 68-75.
[3] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125-130.
[4] 李晓亮,刘源,李玉鑫,江建宏,魏琨,张宏博. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报 (工学版), 2021, 51(4): 54-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!