您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (6): 9-16.doi: 10.6040/j.issn.1672-3961.0.2020.084

• • 上一篇    

深拖地震线列阵的动力学建模与位置预报

朱向前1,魏峥嵘2,3,裴彦良2,于凯本4,宗乐4   

  1. 1. 山东大学机械工程学院, 山东 济南 250061;2. 自然资源部第一海洋研究所自然资源部海洋地质与成矿作用重点实验室, 山东 青岛 266061;3. 长安大学地质工程与测绘学院, 陕西 西安 710054;4. 国家深海基地管理中心, 山东 青岛 266237
  • 发布日期:2020-12-15
  • 作者简介:朱向前(1987— ),男,山东平邑人,研究员,博士,主要研究方向为多体动力学,车辆动力学,海洋水动力学. E-mail:xqzhu@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51909145);国家重点研发计划资助项目(2016YFC0303901)

Dynamic modeling and position prediction of deep-towed seismic array

ZHU Xiangqian1, WEI Zhengrong2,3, PEI Yanliang2, YU Kaiben4, ZONG Le4   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, Shandong, China;
    3. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaannxi, China;
    4. National Deep Sea Center, Qingdao 266237, Shandong, China
  • Published:2020-12-15

摘要: 鉴于传统反演法无法准确计算线列阵位置,提议搭建拖体-线列阵-阻力伞系统的动力学模型,借助动力学仿真计算线列阵的位置。参照实际海试数据,分别基于传统反演法和仿真法计算线列阵的位置,继而计算海底反射波的走时。通过对比反射波实际的走时记录,表明传统反演结果存在数据错位现象,而动力学仿真结果连续稳定且与实际记录吻合。动力学仿真是一种有效预报线列阵位置的方法。

关键词: 深海多道地震线列阵, 阻力伞, 动力学建模, 位置预报, 反演法

Abstract: Given the inversion calculation cannot compute the position of array exactly, the dynamic modeling of towed vehicle-seismic array-drogue was purposed, and the position of array was calculated by dynamic simulation. The position of seismic array was calculated by inversion calculation and dynamic simulation, respectively. Then, the travel times of the reflected wave by seabed were calculated with respect to the position of the array. The comparison between the calculated travel times and real seismic records indicated that the malpositions were shown in the inversion calculation, while the result by dynamic simulation was stable and matched well with real records. Dynamic analysis was an efficient method in position prediction of seismic array.

Key words: deep-towed seismic array, drogue, dynamic modeling, position prediction, inversion claculation

中图分类号: 

  • TH122
[1] 栾锡武,赵克斌,孙冬胜,等. 海域天然气水合物勘测的地球物理方法[J].地球物理学进展, 2008, 23(1): 210-219. LUAN Xiwu, ZHAO Kebin, SUN Dongsheng, et al. Geophysical methods for marine gas hydrates exploration[J]. Progress in Geophysics, 2008, 23(1): 210-219.
[2] 撒利明,杨午阳,姚逢昌,等. 地震反演技术回顾与展望[J].石油地球物理勘探, 2015, 50(1): 184-202. SA Liming, YANG Wuyang, YAO Fengchang, et al. Past, present, and future of geophysical inversion[J]. Oil Geophysical Prospecting, 2015, 50(1): 184-202.
[3] CHAPMAN N R, GETTRUST J F, WALIA R, et al. High-resolution, deep-towed, multichannel seismic survey of deep-sea gas hydrates off western Canada[J]. Geophysics, 2002, 67(4): 1038-1047.
[4] HE T, SPENCE G D, WOOD W T, et al. Imaging a hydrate-related cold vent offshore Vancouver Island from deep-towed multichannel seismic data Imaging a hydrate-related cold vent[J]. Geophysics, 2009, 74(2): B23-B36.
[5] 赵庆献,韩立国,伍忠良,等.天然气水合物准三维地震勘探电缆动态定位精度研究[J]. 吉林大学学报(地球科学版), 2009, 39(5): 936-941. ZHAO Qingxian, HAN Liguo, WU Zhongliang, et al. Investigation on streamer dynamic positioning precision on gas-hydrate semi-three dimension seismic survey. Journal of Jilin University(Earch Science Edition), 2009, 39(5): 936-941.
[6] 滕月慧,曾赛. 被动拖曳线列阵阵形空间畸变估计算法[J]. 水下无人系统学报, 2018, 26(5): 503-509. TENG Yuehui, ZENG Sai. A shape estimation algorithm of deformed towed array in passive sonar[J]. Journal of Undersea System, 2018, 26(5): 503-509.
[7] MARSSET B, MENUT E, KER S, et al. Deep-towed high resolution multichannel seismic imaging[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 93: 83-90.
[8] 孔繁达,何涛. 深拖曳多道地震系统阵列几何形态的高精度反演[J].北京大学学报(自然科学版), 2012, 48(1): 71-78. KONG Fanda, HE Tao. Accurate array geometry inversion of deep-towed multichannel seismic system[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012, 48(1): 71-78.
[9] 张爱军,王昌明,何云峰. 水下运载器导航系统航向误差角补偿研究[J]. 弹道学报, 2008, 20(3): 68-70. ZHANG Aijun,WANG Changming,HE Yunfeng. Research on compensation of course error angle for underwater vehicle-based navigation system[J]. Journal of Ballistics, 2008, 20(3): 68-70.
[10] 汤志臣,朱克强,包雄关. 多分支拖曳线列阵系统的拖曳段张力和尾绳段振动极值的研究[J]. 宁波大学学报, 2016, 29(1): 127-132. TANG Zhichen, ZHU Keqiang, BAO Xiongguan. Research: towing strain and tension-vibration extremum at rope end for multi-branch towing linear array system[J]. Journal of Ningbo University(NSEE), 2016, 29(1): 127-132.
[11] 王岩峰.拖曳式多参数剖面测量系统的总统设计、功能评价及应用[D]. 青岛:中国科学院,研究所院,第一海洋研究所, 2006. WANG Yanfeng. General design, evaluation and application of towed multi-parameter profling system[D]. Qingdao:Department of Physical Oceanography, Institute of Oceanography, Chinese Academy of Sciences, 2006.
[12] ABLOW C, SCHECHTER S. Numerical simulation of undersea cable dynamics[J]. Ocean Engineering, 1983, 10(6): 443-457.
[13] DOWLING A. The dynamics of towed flexible cylinders part 1:neutrally buoyant elements[J]. Journal of Fluid Mechanics, 1988, 187(1): 507-532.
[14] 吴喆莹,张维竞,刘涛,等.水下拖缆动力学特性计算机仿真研究[J]. 信息技术, 2012(7): 25-28. WU Zheying, ZHANG Weijing, LIU Tao, et al. Computational simulation study on dynamic characteristics of underwater towed cable[J]. Information Technology, 2012, 7:25-28.
[15] BUCKHAM B, NAHON M, SETO M, et al. Dynamics and control of a towed underwater vehicle system part I: model development[J]. Ocean Engineering, 2003, 30(4): 453-470.
[16] 王飞. 海洋勘探拖曳系统运动仿真及控制技术研究[D]. 上海:上海交通大学,船舶与海洋结构物设计制造系, 2006. WANG Fei. Simulation and control research of marine towed seismic system[D]. Shanghai: Department of Design and Manufacture of Naval Architecture, Shaihai Jiaotong University, 2006.
[17] ZHU X, YOO W. Numerical modeling of a spar platform tethered by a mooring cable[J]. Chinese Journal of Mechanical Engineering, 2015, 28(4): 785-792.
[18] ZHU X, YOO W. Dynamic analysis of a floating spherical buoy fastened by mooring cables[J]. Ocean Engineering, 2016, 121: 462-471.
[19] ZHU X, YOO W. Suggested new element reference frame for dynamic analysis of marine cables[J]. Nonlinear Dynamics, 2017, 87(1): 489-501.
[20] DU X, CUI H, ZHANG Z. A numerical method for analyzing the influence of underwater vehicle flow field on dynamic behavior of towed sonar cable array[J]. Ocean Engineering, 2019, 175: 163-175.
[21] ZHU X, CHOI J. Dynamic analysis of lubrication for vehicle transmission by recurdyn and particleworks[C] //Program and Abstract Book of the 9th Asian Conference on Multibody Dynamics.[S.l.] : [s.n.] , 2018:138-139.
[22] SHAKIBAEINIA A, JIN Y C. MPS-based mesh-free particle method for modeling open-channel flows[J]. Journal of Hydraulic Engineering, 2011, 137(11): 1375-1384.
[23] 魏峥嵘,裴彦良,刘保华. 深拖多道高分辨率地震探测技术综述[J]. 地球物理学进展, 2020, 35(3): 1191-1198. WEI Zhengrong, PEI Yanliang, LIU Baohua. Review of deep-towed, high resolution multi-channel seismic exploration[J]. Progress in Geophysics, 2020, 35(3): 1191-1198.
[1] 任昭鹏,奚瑞,王生海,张志江,陈海泉. 船用起重机三索限位式防摇摆装置设计[J]. 山东大学学报 (工学版), 2020, 50(3): 125-132142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!