您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (4): 93-98.doi: 10.6040/j.issn.1672-3961.0.2018.530

• 机械与能动工程 • 上一篇    下一篇

偏心轴搅拌槽内的层流流场特性

李美婷1(),李威2,李晓光3,杨锋苓1,*()   

  1. 1. 山东大学机械工程学院, 山东 济南 250061
    2. 中石油华东设计院有限公司, 山东 青岛 266071
    3. 山东天力能源股份有限公司, 山东 济南 250100
  • 收稿日期:2018-12-06 出版日期:2019-08-20 发布日期:2019-08-06
  • 通讯作者: 杨锋苓 E-mail:172785430@qq.com;fly@sdu.edu.cn
  • 作者简介:李美婷(1992—),女,吉林长春人,硕士研究生,主要研究方向为流体搅拌混合. E-mail:172785430@qq.com
  • 基金资助:
    山东省重点研发计划资助项目(2016GGX103035);山东省重点研发计划资助项目(2017GGX70101)

Laminar flow field characteristics in the stirred vessel equipped with an eccentric-shaft impeller

Meiting LI1(),Wei LI2,Xiaoguang LI3,Fengling YANG1,*()   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    2. CNPC Eastchina Design Institute Co., Ltd, Qingdao 266071, Shandong, China
    3. Shandong Tianli Drying Technology and Equipment Cop., Ltd., Jinan 250100, Shandong, China
  • Received:2018-12-06 Online:2019-08-20 Published:2019-08-06
  • Contact: Fengling YANG E-mail:172785430@qq.com;fly@sdu.edu.cn
  • Supported by:
    山东省重点研发计划资助项目(2016GGX103035);山东省重点研发计划资助项目(2017GGX70101)

摘要:

针对搅拌槽内处理层流状态下高黏度流体时混合效率偏低的现象,提出一种偏心轴(轴结构为曲轴)搅拌方式。首先以纯度为99%的甘油为介质,传统的二叶平桨为研究对象,对直径0.3 m的搅拌槽内的层流流场进行数值研究。中心搅拌时速度模拟结果与试验结果对比,验证了所建模型及模拟方法的可靠性。研究发现,与中心搅拌相比,偏心搅拌和偏心轴搅拌所产生的流场结构是非对称的;相同转速下,偏心轴搅拌相比中心搅拌时流体的槽内整体的体积加权平均速度增大了约68%,功率准数比中心搅拌增加了约15.3%;偏心轴搅拌对槽内速度的提升,扩大了流体扰动范围,对提高槽内流体混合效率具有一定的优势。

关键词: 搅拌槽, 偏心轴搅拌, 计算流体力学, 层流, 功率消耗

Abstract:

For the purpose of improving mixing efficiency of the stirred tank with high viscosity fluid laminar flow condition, an eccentric-shaft agitation method was proposed. With a purity of 99% glycerol as medium, and the traditional 2-flat-blade impeller as the research object, the laminar flow fields were numerically studied. The inner diameter of the stirred vessel was 0.3m and the agitated fluid was glycerol. The modeling reliability and simulation methods of the concentric agitation were validated by experimental results. In comparison with the concentric agitation, flow fields generated by eccentric and eccentric-shaft agitation were asymmetrical, and theoverall volume weitghted average velocity of the groove fluid generated by eccentric-shaft agitation could be raised by 68%. And furthermore, when operated under the same speed, the power consumption of eccentric-shaft agitation increased 15.3% than that of concentric agitation. However, the eccentric shaft agitation increased the speed in the tank and expanded the range of disturbance. Accordingly, the superiority of eccentric-shaft agitation of improving the mixing efficiency in the tank was apparent.

Key words: stirred vessel, eccentric-shaft agitation, computational fluid dynamics, laminar flow, power consumption

中图分类号: 

  • TQ051

图1

搅拌槽结构示意图"

图2

试验装置示意图 1—计算机; 2—同步器; 3—激光器; 4—电机; 5—支架; 6—搅拌槽; 7—方形槽; 8—搅拌轴; 9—搅拌桨; 10—CCD相机"

图3

监测点速度变化曲线图"

图4

轴向速度模拟值与试验值对比"

图5

径向速度模拟值与试验值对比"

图6

搅拌槽轴向纵截面内的速度矢量图及速度云图"

图7

不同高度处速度变化对比"

表1

不同搅拌方式的功率准数"

搅拌方式功率准数
中心搅拌4.25
偏心搅拌4.45
偏心轴搅拌4.90
1 王凯, 虞军. 搅拌设备[M]. 北京: 化学工业出版社, 2003.
2 王凯, 冯连芳. 混合设备设计[M]. 北京: 机械工业出版社, 2000.
3 陈志平, 章序文, 林兴华, 等. 搅拌与混合设备设计选用手册[M]. 北京: 化学工业出版社, 2004.
4 BRESLER S , SHINBROT T , METCALFE G , et al. Isolated mixing regions:origin, robustness and control[J]. Chemical Engineering Science, 1997, 52 (10): 1623- 1636.
doi: 10.1016/S0009-2509(96)00406-X
5 LAMBERTO D J , ALVEREZ M M , MUZZIO F J . Experimental and computational investigation of the lamina flow structure in a stirred tank[J]. Chemical Engineering Science, 1999, 54 (7): 919- 942.
doi: 10.1016/S0009-2509(98)00275-9
6 ARRATIAL P E , LACOMBE J P , SHINBORT , et al. Segregated region sin continuous laminar stirred tank reactors[J]. Chemical Engineering Science, 2004, 59 (7): 1481- 1490.
doi: 10.1016/j.ces.2003.06.003
7 ZALE J M , SZALAI E S , ALVEREZ M M . Using CFD to understand chaotic mixing in laminar stirred tanks[J]. AIChE Journal, 2002, 48 (10): 2124- 2134.
doi: 10.1002/aic.690481004
8 LAMBERTO D J , ALVEREZ M M , MUZZIO F J . Computational analysis of regular and chaotic mixing in a stirred tank reactor[J]. Chemical Engineering Science, 2001, 56 (16): 4887- 4899.
doi: 10.1016/S0009-2509(00)00407-3
9 MAKINO T , OHMURA N , KATAOKA K . Observation of isolated mixing regions in a stirred vessel[J]. Journal of Chemical Engineering of Japan, 2001, 34 (5): 574- 578.
doi: 10.1252/jcej.34.574
10 LAMBERTO D J , ALVEREZ M M , MUZZIO F J . Using time dependent RPM to enhance mixing in stirred vessel[J]. Chemical Engineering Science, 1996, 51 (5): 733- 741.
doi: 10.1016/0009-2509(95)00203-0
11 YOSHIHITO K , YUTAKA T , MASAKO B , et al. Improvement of mixing efficiencies of conventional impeller with unsteady speed in an impeller revolution[J]. Journal of Chemical Engineering of Japan, 2005, 38 (9): 688- 691.
doi: 10.1252/jcej.38.688
12 AMEUR H . Effect of the shaft eccentricity and rotational direction on the mixing characteristics in cylindrical tank reactors[J]. Chinese of Journal of Chemical Engineering, 2016, 24 (12): 1647- 1654.
doi: 10.1016/j.cjche.2016.05.011
13 YANG F L , ZHOU S J , ZHANG C X . Free-surface turbulent flow in an eccentric stirred tank[J]. Chemical Engineering & Technology, 2017, 40 (3): 561- 570.
14 MASIUK S . Mixing time for a reciprocating plate agitator with flapping blades[J]. Chemical Engineering Journal, 2000, 79 (1): 23- 30.
doi: 10.1016/S1385-8947(00)00141-8
15 MASIUK S , RAKOCZY R . Power consumption, mixing time, heat and mass transfer measurements for liquid vessels that are mixed using reciprocating multiplate agitators[J]. Chemical Engineering Progress, 2007, 46 (2): 89- 98.
16 MASIUK S , RAKOCZY R , KORDAS M . Comparison density of maximal energy for mixing process using the same agitator in rotational and reciprocating movements[J]. Chemical Engineering Progress, 2008, 47 (8): 1252- 1260.
doi: 10.1016/j.cep.2007.04.004
17 YANG F L , ZHOU S J , AN X H . Gas—liquid hydrodynamics in a vessel stirred by dual dislocated-blade Rushton impellers[J]. Chinese Journal of Chemical Engineering, 2015, 23 (11): 1746- 1754.
18 杨锋苓, 周慎杰. 错位Rushton桨的水动力学特性[J]. 华中科技大学学报(自然科学版), 2016, 44 (2): 31- 35.
YANG Fengling , ZHOU Shenjie . Chara cterization on hydrodynamics of dislocated-blade Rushton impellers[J]. Journal of Huazhong University of Science and Technology(Natural Science), 2016, 44 (22): 31- 35.
19 栾德玉, 张盛峰, 郑深晓, 等. 基于流固耦合的错位桨搅拌假塑性流体动力学特性[J]. 化工学报, 2017, 68 (6): 2328- 2335.
LUAN Deyu , ZHANG Shengfeng , ZHENG Shenxiao , et al. Dynamic characteristics of impeller of perturbed six-bent-bladed turbine in pseudoplastic fluid based on fluid-structure interaction[J]. Journal of Chemical Industry and Engineering, 2017, 68 (6): 2328- 2335.
20 冉绍辉, 周慎杰, 杨锋苓, 等. 错位Rushton桨气液分散特性和传质性能实验研究[J]. 浙江大学学报(工学版), 2017, 51 (7): 1368- 1373.
RAN Shaohui , ZHOU Shenjie , YANG Fengling , et al. Experimental study on gas-liquid dispersion and mass transfer of dislocated-blade Rushton impeller[J]. Journal of Zhejiang University(Engineering Science), 2017, 51 (7): 1368- 1373.
21 BOUZLT M , BENAH L , HACHEML M , et al. CFD simulations of the 3D velocity profile of paddle agitator and two-blade impeller in stirred vessel with a highly viscous Newtonian fluid[J]. Journal of Applied Sciences, 2006, 6 (13): 2733- 2740.
doi: 10.3923/jas.2006.2733.2740
22 ABID M , ABLD M , XUEREB C , et al. Modeling of the 3D hydrodynamics of 2-blade impellers in stirred tanks filled with a highly viscous fluid[J]. The Canadian Journal of Chemical Engineering, 1994, 72 (2): 184- 193.
23 TANAWAT S , SUTEERA P , THANANSAK T , et al. Comparative study of Rushton and paddle turbines performance for biohydrogen production from palm oil mill effluent in a continuous stirred tank reactor under thermophilic condition[J]. Chemical Engineering Science, 2017, 174, 354- 364.
doi: 10.1016/j.ces.2017.09.024
24 永田进治.混合原理与应用[M].马继顺,译.北京:化学工业出版社, 1984.
25 谢明辉, 周国忠, 虞培清. 桨式搅拌器功率准数三种取得方法的对比[J]. 化学工程, 2010, 38 (10): 167- 170.
doi: 10.3969/j.issn.1005-9954.2010.10.037
XIE Minghui , ZHOU Guozhong , YU Peiqing . Comparison of power number for paddle type impellers by three methods[J]. Chemical Engineering, 2010, 38 (10): 167- 170.
doi: 10.3969/j.issn.1005-9954.2010.10.037
[1] 张翠勋, 曹明见, 杨锋苓. 双层格栅桨搅拌容器内气液两相混合[J]. 山东大学学报 (工学版), 2021, 51(4): 71-76.
[2] 刘欣,杨锋苓. 柔性Rushton桨的振动特性[J]. 山东大学学报 (工学版), 2020, 50(5): 50-55.
[3] 肖迪,廉静,纪少波,赵盛晋,徐怀民. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报(工学版), 2017, 47(4): 59-63.
[4] 任立波, 尚立宝, 闫日雄, 何海澜, 赵红霞, 韩吉田. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM数值模拟[J]. 山东大学学报(工学版), 2015, 45(2): 62-66.
[5] 张翠勋, 杨锋苓, 连继咏. 半圆管挡板搅拌槽内的湍流流场[J]. 山东大学学报(工学版), 2015, 45(1): 76-81.
[6] 车翠翠,田茂诚*,冷学礼. 翼片诱导纵向涡强化层流对流传热数值模拟[J]. 山东大学学报(工学版), 2013, 43(5): 104-110.
[7] 叶应贵1,杨兰玲2,许爱华3*,赵旭4,黄强1,闫继昱2. 离子色谱技术在海相地层钻井中的应用研究[J]. 山东大学学报(工学版), 2012, 42(4): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .
[3] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[4] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[5] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[6] 王杉,李田泽 . 一种绕线转子感应电机控制的新方法[J]. 山东大学学报(工学版), 2008, 38(3): 86 -89 .
[7] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[8] 宋青,李晓磊,张承进 . 基于瓶颈分析的邮政速递网络的优化[J]. 山东大学学报(工学版), 2007, 37(5): 29 -33 .
[9] 胡红春,吴耀华,廖莉 . 物流配送车辆线路的优化及其应用[J]. 山东大学学报(工学版), 2007, 37(4): 104 -107 .
[10] 梁京芸,王明刚,柴家前,刘永庆 . 1.6-二-(N5-取代苯基-N1-二胍)己烷盐酸盐的合成和体外抗菌活性[J]. 山东大学学报(工学版), 2008, 38(3): 104 -107 .