您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (4): 99-107.doi: 10.6040/j.issn.1672-3961.0.2019.018

• 机械与能动工程 • 上一篇    下一篇

矩形蓄热单元内石蜡的相变传热特性

周慧琳(),邱燕*()   

  1. 山东大学能源与动力工程学院, 山东 济南 250061
  • 收稿日期:2019-01-12 出版日期:2019-08-20 发布日期:2019-08-06
  • 通讯作者: 邱燕 E-mail:201734101@mail.sdu.edu.cn;anneqiu@sdu.edu.cn
  • 作者简介:周慧琳(1995—),女,山东东营人,硕士,主要研究方向为强化传热及余热回收. E-mail:201734101@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51576115);国网山东省电力公司科技资助项目(52060616000L)

Phase change characteristics of paraffin in rectangular storage unit

Huilin ZHOU(),Yan QIU*()   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2019-01-12 Online:2019-08-20 Published:2019-08-06
  • Contact: Yan QIU E-mail:201734101@mail.sdu.edu.cn;anneqiu@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(51576115);国网山东省电力公司科技资助项目(52060616000L)

摘要:

为掌握蓄热单元内相变材料(phase change material, PCM)的传热特性,提高相变换热器的传热效率,采用焓-孔隙率模型,利用FLUENT软件对石蜡在矩形蓄热单元内的传热过程进行数值模拟,引入单元液相分数β及无量纲FoSteRa分析圆管外不同位置处石蜡的蓄/放热规律及换热流体入口温度不同对石蜡蓄/放热过程的影响规律。结果表明:圆管外石蜡的总体熔化快慢按照上部、左/右部、下部的顺序进行,且上部比其它部分完成熔化所需时间缩短20%以上;放热过程中,圆管外石蜡的总体凝固快慢按照下部、左/右部、上部的顺序进行。矩形壳体内PCM蓄热过程的传热机制由导热逐渐过渡为自然对流。增加换热流体与石蜡之间的温差能显著提高蓄放热效率。通过多项式拟合得到关于β的准则关系式。

关键词: 相变换热器, 相变材料, 蓄热, 放热, 数值模拟

Abstract:

To study the heat transfer characteristics of phase change material (PCM) in a storage unit and improve the heat transfer efficiency of phase change heat exchanger, the enthalpy-porous media model and FLUENT program were used to carry out a numerical investigation on the heat transfer process of paraffin in a rectangular heat storage unit. The element liquid fraction β and dimensionless Fo, Ste and Ra were introduced to analyze the influences of different positions outside the tube and inlet temperatures of heat transfer fluid on the melting and solidification process of paraffin. The results showed that the paraffin outside the tube was melted in order from the upper to the left/right part, then the lower part. The total melting time of paraffin in upper part was shorten by at least 20% compared with other parts. Conversely, in the heat release process, the paraffin was solidified in order from the lower, the left/right part and the upper part. The heat transfer mechanism in the unit changed gradually from heat conduction to natural convection in the thermal storage process. The efficiency of heat storage and release could be improved significantly by increasing the temperature difference between heat transfer fluid and paraffin. The criterion of β was obtained by polynomial fitting.

Key words: phase change heat exchanger, PCM, thermal storage, thermal release, numerical simulation

中图分类号: 

  • TK124

图1

物理模型"

表1

石蜡物性参数表"

相变温度/K相变潜热/(kJ·kg-1)密度/(kg·m-3)热导率/(W·(m·K)-1)比热容/(kJ·(kg·K)-1)
固态液态固态液态固态液态
319.68141.919167760.270.111.72.5

图2

计算区域的网格划分"

图3

1#~16#温度测点分布[18]"

图4

数值模拟与试验测试结果的对比"

图5

熔化过程中$\overline{Nu}$随Fo变化"

图6

石蜡吸热温度随时间变化的曲线"

图7

不同入口温度条件下石蜡的吸热温度变化"

图8

不同流体入口温度下,液相分数随熔化时间的变化曲线"

图9

液相分数β随X(X=Ste·Fo·Ra0.05)变化"

图10

石蜡放热温度随时间变化的曲线"

图11

不同入口温度条件下石蜡的温度变化"

图12

不同流体入口温度下,液相分数随凝固时间的变化曲线"

1 徐治国, 赵长颖, 纪育楠. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3 (3): 179- 190.
doi: 10.3969/j.issn.2095-4239.2014.03.02
XU Zhiguo , ZHAO Changying , JI Yunan . State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage and Technology, 2014, 3 (3): 179- 190.
doi: 10.3969/j.issn.2095-4239.2014.03.02
2 毛发, 章学来, 丁磊, 等. 热管式相变储能系统蓄/放热性能试验[J]. 热力发电, 2016, 45 (11): 48- 53.
doi: 10.3969/j.issn.1002-3364.2016.11.048
MAO Fa , ZHANG Xuelai , DING Lei , et al. Experimental research on heat charging and discharging performance of heat pipe phase change energy storage system[J]. Thermal Power Generation, 2016, 45 (11): 48- 53.
doi: 10.3969/j.issn.1002-3364.2016.11.048
3 宋香娥. 太阳能发电热管吸热器相变蓄热单元性能分析[J]. 热力发电, 2015, 44 (9): 37- 42.
doi: 10.3969/j.issn.1002-3364.2015.09.037
SONG Xiang'e . Performance analysis of phase change heat storage unit in heat pipe receiver of solar power generation systems[J]. Thermal Power Generation, 2015, 44 (9): 37- 42.
doi: 10.3969/j.issn.1002-3364.2015.09.037
4 孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展[J]. 化工进展, 2016, 35 (5): 1273- 1281.
MENG Feng , AN Qingsong , GUO Xiaofeng , et al. Research progress in application of heat storage enhancement technology[J]. Chemical Industry and Engineering Progress, 2016, 35 (5): 1273- 1281.
5 杨佳霖, 杜小泽, 杨立军, 等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报, 2015, (2): 497- 503.
YANG Jialin , DU Xiaoze , YANG Lijun , et al. Visualized experiment on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015, (2): 497- 503.
6 SARI A , KARAIPEKLI A . Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27 (8): 1271- 1277.
7 MILLS A , FARID M , SELMAN J R , et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26 (14): 1652- 1661.
8 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63 (增刊1): 119- 122.
WU Zhigen , ZHAO Changying , GU Qingzhi . Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Journal, 2012, 63 (Suppl. 1): 119- 122.
9 DARKWA J , SU O . Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board[J]. Applied Energy, 2012, 95 (2): 246- 252.
10 FOURIE J G , PLESSIS J P D . Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57 (14): 2781- 2789.
doi: 10.1016/S0009-2509(02)00166-5
11 DARZI A A R , FARHADI M , SEDIGHI K . Numerical study of melting inside concentric and eccentric horizontal annulus[J]. Applied Mathematical Modelling, 2012, 36 (9): 4080- 4086.
doi: 10.1016/j.apm.2011.11.033
12 崔海亭, 周慧涛, 蒋静智. 用于储存太阳能的相变蓄热器蓄热性能研究[J]. 可再生能源, 2013, 31 (12): 17- 20.
doi: 10.3969/j.issn.1671-5292.2013.12.004
CUI Haiting , ZHOU Huitao , JIANG Jingzhi . Numerical simulation on heat storing performances of phase-change thermal storage for solar energy[J]. Renewable Energy, 2013, 31 (12): 17- 20.
doi: 10.3969/j.issn.1671-5292.2013.12.004
13 晋瑞芳, 付海明, 徐芳, 等. 同心套管式相变蓄热装置凝固过程的数值模拟[J]. 建筑热能通风空调, 2009, 28 (1): 14- 17.
doi: 10.3969/j.issn.1003-0344.2009.01.004
JIN Ruifang , FU Haiming , XU Fang , et al. Numerical simulation of discharging process for a shell-tube phase change thermal storage[J]. Building Energy & Environment, 2009, 28 (1): 14- 17.
doi: 10.3969/j.issn.1003-0344.2009.01.004
14 彭冬华, 陈振乾, 施明恒. 泡沫金属内相变材料融化传热过程的数值模拟[J]. 工程热物理学报, 2009, 30 (6): 1025- 1028.
doi: 10.3321/j.issn:0253-231X.2009.06.034
PENG Donghua , CHEN Zhenqian , SHI Mingheng . Numerical simulation of phase change material thawing process in metallic foams[J]. Journal of Engineering Thermophysics, 2009, 30 (6): 1025- 1028.
doi: 10.3321/j.issn:0253-231X.2009.06.034
15 KAZEMI M , HOSSEINI M J , RANJBAR A A , et al. Improvement of longitudinal fins configuration in latent heat storage systems[J]. Renewable Energy, 2018, 116, 447- 457.
doi: 10.1016/j.renene.2017.10.006
16 WANG Y , AMIRI A , VAFAI K . An experimental investigation of the melting process in a rectangular enclosure[J]. International Journal of Heat & Mass Transfer, 1999, 42 (19): 3659- 3672.
17 CHANG J , LEUNG D Y C , WU C Z , et al. A review on the energy production, consumption, and prospect of renewable energy in China[J]. Renewable & Sustainable Energy Reviews, 2003, 7 (5): 453- 468.
18 郭英利.石蜡圆管外相变蓄热与释热规律的研究[D].天津:天津大学, 2008.
GUO Yingli. Study on the heat storage and heat release by paraffin phase change outside the pipe[D]. Tianjin: Tianjin University, 2008.
19 袁艳平, 曹晓玲, 白力, 等. 矩形单元内癸酸熔化特性的数值模拟与实验[J]. 西南交通大学学报, 2012, 47 (2): 236- 240.
YUAN Yanping , CAO Xiaoling , BAI Li , et al. Melting behaviors of capric acid in rectangular enclosure[J]. Journal of Southwest Jiao Tong University, 2012, 47 (2): 236- 240.
20 SHATIKIAN V , ZISKIND G , LETAN R . Numerical investigation of a PCM-based heat sink with internal fins[J]. International Journal of Heat & Mass Transfer, 2005, 48 (17): 3689- 3706.
[1] 刘明才. 大断面小净距公路隧道施工影响分析[J]. 山东大学学报 (工学版), 2019, 49(4): 78-85.
[2] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[3] 王忠啸,崔新壮,崔社强,张磊,车华桥,苏俊伟. 咸水区水泥土桩劣化及改性对道路复合地基的影响[J]. 山东大学学报(工学版), 2018, 48(4): 69-77.
[4] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[5] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[6] 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54.
[7] 郑林彬,王建明,何讯超. 2024铝合金喷丸粗糙度试验与数值模拟[J]. 山东大学学报(工学版), 2017, 47(1): 84-89.
[8] 吕国仁,张群,牛奔,高全亭,武照收. 高层建筑桩基施工对邻近建筑物的影响[J]. 山东大学学报(工学版), 2017, 47(1): 48-58.
[9] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[10] 米春荣,李建明. 预应力混凝土管桩后注浆器的研制与应用[J]. 山东大学学报(工学版), 2016, 46(4): 89-95.
[11] 周乾,闫维明,纪金豹. 故宫灵沼轩钢结构动力特性与地震响应[J]. 山东大学学报(工学版), 2016, 46(1): 70-79.
[12] 汤潍泽, 欧金秋, 崔新壮, 楼俊杰, 肖溟, 张炯, 黄丹, 侯飞. 车载引起的沥青路面内动水压力现场试验研究[J]. 山东大学学报(工学版), 2015, 45(6): 84-90.
[13] 曹伟东, 戴涛, 于金彪, 席开华, 鲁统超, 程爱杰. 化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版), 2015, 45(1): 88-94.
[14] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
[15] 张涛, 韩吉田, 闫素英, 于泽庭, 周然. 太阳能真空管的热性能分析与测试[J]. 山东大学学报(工学版), 2014, 44(4): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[2] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[3] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[4] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[5] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[6] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[7] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[8] 王杉,李田泽 . 一种绕线转子感应电机控制的新方法[J]. 山东大学学报(工学版), 2008, 38(3): 86 -89 .
[9] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[10] 梁京芸,王明刚,柴家前,刘永庆 . 1.6-二-(N5-取代苯基-N1-二胍)己烷盐酸盐的合成和体外抗菌活性[J]. 山东大学学报(工学版), 2008, 38(3): 104 -107 .