您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 71-76.doi: 10.6040/j.issn.1672-3961.0.2020.296

• 机械与能动工程 • 上一篇    下一篇

双层格栅桨搅拌容器内气液两相混合

张翠勋1(),曹明见1,杨锋苓2,*()   

  1. 1. 山东天力能源股份有限公司, 山东 济南 250100
    2. 山东大学机械工程学院, 山东 济南 250061
  • 收稿日期:2020-07-22 出版日期:2021-08-20 发布日期:2021-08-18
  • 通讯作者: 杨锋苓 E-mail:zhangcx1208@163.com;fly@sdu.edu.cn
  • 作者简介:张翠勋(1984—),女,山东茌平人,高级工程师,硕士,主要研究方向为流体搅拌混合. E-mail: zhangcx1208@163.com
  • 基金资助:
    山东省重点研发计划资助项目(2017GGX70101)

Gas-liquid mixing in a dual grid-disc impeller stirred vessel

Cuixun ZHANG1(),Mingjian CAO1,Fengling YANG2,*()   

  1. 1. Shandong Tianli Energy Co., Ltd., Jinan 250100, Shandong, China
    2. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-07-22 Online:2021-08-20 Published:2021-08-18
  • Contact: Fengling YANG E-mail:zhangcx1208@163.com;fly@sdu.edu.cn

摘要:

为了提高搅拌容器内的气液混合效果, 在标准Rushton桨的基础上, 用格栅圆盘代替实体圆盘, 设计一种格栅搅拌桨。采用计算流体力学的方法, 研究双层格栅桨的气液混合性能, 并与标准Rushton桨进行了对比。研究结果表明: 在所研究的工况条件下, 双层格栅桨搅拌容器内的流型仍为典型的双循环流动结构, 但搅拌桨附近流体的轴向速度和泵送能力得到了提高, 改善了搅拌桨附近、上下两层桨之间以及搅拌容器上方区域内气体的分散状态。就搅拌功率而言, 双层格栅桨通气前的功率准数比标准Rushton桨约低5%, 具有一定的节能效应; 通气后双层格栅桨的相对功率需求约大8%, 气液混合效率略高。

关键词: 搅拌容器, 格栅搅拌桨, 气液两相流, 计算流体力学, 功耗

Abstract:

In order to improve the gas-fluid mixing efficiency in the stirred vessel, by replacing the solid disc of standard Rushton impeller (RT) with a grid disc, the grid-disc Rushton impeller (RT-G) was designed. Grid independence test was completed. Gas holdup distributions of dual RT were numerically studied by the computational fluid dynamics (CFD) technique and compared with the literature data so as to validate the reliability of the numerical model and simulation method. The same numerical strategy was used to investigate the gas-liquid hydrodynamics of dual RT-G. Results were compared with those of dual RT and it was found that, under the operating condition studied here, dual RT-G had the same double-circulation flow field structure as RT. However, fluid axial velocity around the two RT-G impellers and axial pumping capacity could be enhanced, which contributed to improve the gas distribution state especially in regions adjacent to the impellers, between the upper and lower impeller, as well as in the top area of the stirred vessel. In terms of power consumption, the power number of dual RT-G before gassing was about 5% lower than that of dual RT, which indicated that RT-G was more energy-saving. The relative power demand (RPD) of dual RT-G after gassing was about 8% higher than dual RT, and accordingly was more efficient in gas dispersing.

Key words: stirred vessel, grid-disc impeller, gas-liquid flow, CFD, power consumption

中图分类号: 

  • TQ027

图1

搅拌系统及格栅搅拌桨"

图2

网格独立性验证"

图3

双层RT桨搅拌容器相邻两挡板中间平面内r=77.75 mm处的气含率对比"

图4

搅拌容器相邻两挡板中间平面内的流型对比"

图5

搅拌容器相邻两挡板中间平面内轴向速度对比"

图6

双层RT桨搅拌容器内的气含率"

图7

双层RT-G桨搅拌容器内的气含率"

1 NIENOW A W . Stirring and stirred-tank reactors[J]. Chemie Ingenieur Technik, 2014, 86 (12): 1- 13.
2 MONTANTE G , LEE K C , BRUCATO A , et al. An experimental study of double-to-single-loop flow pattern transition in stirred vessels[J]. Canadian Journal of Chemical Engineering, 1999, 77 (4): 649- 659.
doi: 10.1002/cjce.5450770405
3 MONTANTE G , LEE K C , BRUCATO A , et al. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels[J]. Chemical Engineering Science, 2001, 56 (12): 3751- 3770.
doi: 10.1016/S0009-2509(01)00089-6
4 SMITH J M. Reversible mixing impeller: US5316443[P]. 1999-05-31.
5 BAKKER A, OHIO D. Impeller assembly with asymmetric concave blades: US5791780[P]. 1998-08-11.
6 GELVES R , DIETRICH A , TAKORS R . Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller[J]. Bioprocess and Biosystems Engineering, 2014, 37 (3): 365- 375.
doi: 10.1007/s00449-013-1001-8
7 GU D , LIU Z , TAO C , et al. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigid-flexible impeller[J]. International Journal of Chemical Reactor Engineering, 2019, 17 (4): 20180196.
8 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70 (5): 1693- 1701.
XIONG Xia , LIU Zuohua , GU Deyin , et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70 (5): 1693- 1701.
9 LUESKE J , KAR K , PIRAS L , et al. Power draw and gas-liquid mass transfer characteristics of a stirred tank reactor with draft tube configuration[J]. Chemical Engineering and Technology, 2015, 38 (11): 1993- 2001.
doi: 10.1002/ceat.201500071
10 FALLEIRO L H , ASHRAF A B . Computational modeling of hydrodynamics and mixing in a batch stirred vessel[J]. Chemical Engineering Communications, 2021, 208 (6): 883- 892.
doi: 10.1080/00986445.2019.1694919
11 FOUNTAIN G O , KHAKHAR D V , OTTINO J M . Visualization of three-dimensional chaos[J]. Science, 1998, 281, 683- 686.
doi: 10.1126/science.281.5377.683
12 ALVAREZ M M , ARRATIA P E , MUZZIO F J . Laminar mixing in eccentric stirred tank systems[J]. Canadian Journal of Chemical Engineering, 2002, 80 (4): 546- 557.
13 WANG S , WU J , OHMURA N . Inclined-shaft agitation for improved viscous mixing[J]. Industrial and Engineering Chemistry Research, 2013, 52 (33): 11741- 11751.
doi: 10.1021/ie401003s
14 OLDSHUE J Y , HIRSCHLAND H E , GRETTON A T . Blending of low-viscosity liquids with side-entering mixers[J]. Chemical Engineering Progress, 1956, 52 (11): 481- 484.
15 KOMODA Y , INOUE Y. HIRATA Y . Mixing performance by reciprocating disk in cylindrical vessel[J]. Journal of Chemical Engineering of Japan, 2000, 33 (6): 879- 885.
doi: 10.1252/jcej.33.879
16 LAMBERTO D J , MUZZIO F J , SWANSON P D , et al. Using time-dependent RPM to enhance mixing in stirred vessels[J]. Chemical Engineering Science, 1996, 51 (5): 733- 741.
doi: 10.1016/0009-2509(95)00203-0
17 YAO W G , SATO H , TAKAHASHI K , et al. Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds[J]. Chemical Engineering Science, 1998, 53 (17): 3031- 3040.
doi: 10.1016/S0009-2509(98)00116-X
18 YANG F L , ZHOU S J , ZHANG C X . Turbulent flow and mixing performance of a novel six-blade grid disc impeller[J]. Korean Journal of Chemical Engineering, 2015, 32 (5): 816- 825.
doi: 10.1007/s11814-014-0255-4
19 ALVES S S , MAIA C I , VASCONCELOS J M T . Experimental and modelling study of gas dispersion in a double turbine stirred tank[J]. Chemical Engineering Science, 2002, 57 (3): 487- 496.
doi: 10.1016/S0009-2509(01)00400-6
20 KERDOUSS F , BANNARI A , PROULX P . CFD modeling of gas dispersion and bubble size in a double turbine stirred tank[J]. Chemical Engineering Science, 2006, 61 (10): 3313- 3322.
doi: 10.1016/j.ces.2005.11.061
21 RANNADE V V , PERRARD M , XUREB C , et al. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine[J]. Chemical Engineering Research and Design, 2001, 79 (8): 957- 964.
doi: 10.1205/02638760152721190
22 NG K , FENTIMAN N J , LEE K C , et al. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller[J]. Chemical Engineering Research and Design, 1998, 76 (6): 737- 747.
doi: 10.1205/026387698525315
23 DERKSEN J J , DOELMAN M S , VAN DEN AKKER H E A . Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank[J]. Experiments in Fluids, 1999, 27 (6): 522- 532.
doi: 10.1007/s003480050376
24 TAGHAVI M , ZADGHAFFARI R , MOGHADDAS J , et al. Experimental and CFD investigations of power consumption in a dual Rushton turbine stirred tank[J]. Chemical Engineering Research and Design, 2011, 89 (3): 280- 290.
[1] 李美婷,李威,李晓光,杨锋苓. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报 (工学版), 2019, 49(4): 93-98, 107.
[2] 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95.
[3] 任立波, 尚立宝, 闫日雄, 何海澜, 赵红霞, 韩吉田. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM数值模拟[J]. 山东大学学报(工学版), 2015, 45(2): 62-66.
[4] 赵祥红1,2,沈继忠2*. 基于BiCMOS的高性能CML三值D型触发器的设计[J]. 山东大学学报(工学版), 2013, 43(3): 99-104.
[5] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78-80 .
[6] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16-20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[3] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[4] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[5] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[6] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[7] 徐晓丹, 段正杰, 陈中育. 基于扩展情感词典及特征加权的情感挖掘方法[J]. 山东大学学报(工学版), 2014, 44(6): 15 -18 .
[8] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[9] 王凯,孙奉仲,赵元宾,高明,高山 . 自然通风冷却塔进风口流场模型的建立及计算[J]. 山东大学学报(工学版), 2008, 38(1): 13 -17 .
[10] 张波,李术才,杨学英,王锡平,张敦福 . 含两个圆形孔洞岩盐路基稳定性的数值分析[J]. 山东大学学报(工学版), 2008, 38(1): 66 -69 .