山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (4): 71-76.doi: 10.6040/j.issn.1672-3961.0.2020.296
Cuixun ZHANG1(),Mingjian CAO1,Fengling YANG2,*()
摘要:
为了提高搅拌容器内的气液混合效果, 在标准Rushton桨的基础上, 用格栅圆盘代替实体圆盘, 设计一种格栅搅拌桨。采用计算流体力学的方法, 研究双层格栅桨的气液混合性能, 并与标准Rushton桨进行了对比。研究结果表明: 在所研究的工况条件下, 双层格栅桨搅拌容器内的流型仍为典型的双循环流动结构, 但搅拌桨附近流体的轴向速度和泵送能力得到了提高, 改善了搅拌桨附近、上下两层桨之间以及搅拌容器上方区域内气体的分散状态。就搅拌功率而言, 双层格栅桨通气前的功率准数比标准Rushton桨约低5%, 具有一定的节能效应; 通气后双层格栅桨的相对功率需求约大8%, 气液混合效率略高。
中图分类号:
1 | NIENOW A W . Stirring and stirred-tank reactors[J]. Chemie Ingenieur Technik, 2014, 86 (12): 1- 13. |
2 |
MONTANTE G , LEE K C , BRUCATO A , et al. An experimental study of double-to-single-loop flow pattern transition in stirred vessels[J]. Canadian Journal of Chemical Engineering, 1999, 77 (4): 649- 659.
doi: 10.1002/cjce.5450770405 |
3 |
MONTANTE G , LEE K C , BRUCATO A , et al. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels[J]. Chemical Engineering Science, 2001, 56 (12): 3751- 3770.
doi: 10.1016/S0009-2509(01)00089-6 |
4 | SMITH J M. Reversible mixing impeller: US5316443[P]. 1999-05-31. |
5 | BAKKER A, OHIO D. Impeller assembly with asymmetric concave blades: US5791780[P]. 1998-08-11. |
6 |
GELVES R , DIETRICH A , TAKORS R . Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller[J]. Bioprocess and Biosystems Engineering, 2014, 37 (3): 365- 375.
doi: 10.1007/s00449-013-1001-8 |
7 | GU D , LIU Z , TAO C , et al. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigid-flexible impeller[J]. International Journal of Chemical Reactor Engineering, 2019, 17 (4): 20180196. |
8 | 熊黠, 刘作华, 谷德银, 等. 刚柔组合桨强化粉煤灰酸浸搅拌槽内固液混沌混合[J]. 化工学报, 2019, 70 (5): 1693- 1701. |
XIONG Xia , LIU Zuohua , GU Deyin , et al. Chaotic mixing process of fly ash in acid leaching tank intensified by rigid-flexible impeller[J]. CIESC Journal, 2019, 70 (5): 1693- 1701. | |
9 |
LUESKE J , KAR K , PIRAS L , et al. Power draw and gas-liquid mass transfer characteristics of a stirred tank reactor with draft tube configuration[J]. Chemical Engineering and Technology, 2015, 38 (11): 1993- 2001.
doi: 10.1002/ceat.201500071 |
10 |
FALLEIRO L H , ASHRAF A B . Computational modeling of hydrodynamics and mixing in a batch stirred vessel[J]. Chemical Engineering Communications, 2021, 208 (6): 883- 892.
doi: 10.1080/00986445.2019.1694919 |
11 |
FOUNTAIN G O , KHAKHAR D V , OTTINO J M . Visualization of three-dimensional chaos[J]. Science, 1998, 281, 683- 686.
doi: 10.1126/science.281.5377.683 |
12 | ALVAREZ M M , ARRATIA P E , MUZZIO F J . Laminar mixing in eccentric stirred tank systems[J]. Canadian Journal of Chemical Engineering, 2002, 80 (4): 546- 557. |
13 |
WANG S , WU J , OHMURA N . Inclined-shaft agitation for improved viscous mixing[J]. Industrial and Engineering Chemistry Research, 2013, 52 (33): 11741- 11751.
doi: 10.1021/ie401003s |
14 | OLDSHUE J Y , HIRSCHLAND H E , GRETTON A T . Blending of low-viscosity liquids with side-entering mixers[J]. Chemical Engineering Progress, 1956, 52 (11): 481- 484. |
15 |
KOMODA Y , INOUE Y. HIRATA Y . Mixing performance by reciprocating disk in cylindrical vessel[J]. Journal of Chemical Engineering of Japan, 2000, 33 (6): 879- 885.
doi: 10.1252/jcej.33.879 |
16 |
LAMBERTO D J , MUZZIO F J , SWANSON P D , et al. Using time-dependent RPM to enhance mixing in stirred vessels[J]. Chemical Engineering Science, 1996, 51 (5): 733- 741.
doi: 10.1016/0009-2509(95)00203-0 |
17 |
YAO W G , SATO H , TAKAHASHI K , et al. Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds[J]. Chemical Engineering Science, 1998, 53 (17): 3031- 3040.
doi: 10.1016/S0009-2509(98)00116-X |
18 |
YANG F L , ZHOU S J , ZHANG C X . Turbulent flow and mixing performance of a novel six-blade grid disc impeller[J]. Korean Journal of Chemical Engineering, 2015, 32 (5): 816- 825.
doi: 10.1007/s11814-014-0255-4 |
19 |
ALVES S S , MAIA C I , VASCONCELOS J M T . Experimental and modelling study of gas dispersion in a double turbine stirred tank[J]. Chemical Engineering Science, 2002, 57 (3): 487- 496.
doi: 10.1016/S0009-2509(01)00400-6 |
20 |
KERDOUSS F , BANNARI A , PROULX P . CFD modeling of gas dispersion and bubble size in a double turbine stirred tank[J]. Chemical Engineering Science, 2006, 61 (10): 3313- 3322.
doi: 10.1016/j.ces.2005.11.061 |
21 |
RANNADE V V , PERRARD M , XUREB C , et al. Influence of gas flow rate on the structure of trailing vortices of a Rushton turbine[J]. Chemical Engineering Research and Design, 2001, 79 (8): 957- 964.
doi: 10.1205/02638760152721190 |
22 |
NG K , FENTIMAN N J , LEE K C , et al. Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller[J]. Chemical Engineering Research and Design, 1998, 76 (6): 737- 747.
doi: 10.1205/026387698525315 |
23 |
DERKSEN J J , DOELMAN M S , VAN DEN AKKER H E A . Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank[J]. Experiments in Fluids, 1999, 27 (6): 522- 532.
doi: 10.1007/s003480050376 |
24 | TAGHAVI M , ZADGHAFFARI R , MOGHADDAS J , et al. Experimental and CFD investigations of power consumption in a dual Rushton turbine stirred tank[J]. Chemical Engineering Research and Design, 2011, 89 (3): 280- 290. |
[1] | 李美婷,李威,李晓光,杨锋苓. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报 (工学版), 2019, 49(4): 93-98, 107. |
[2] | 王丹华,张冠敏,冷学礼,徐梦娜,韩圆圆. T型管内两相流分配特性数值模拟[J]. 山东大学学报(工学版), 2018, 48(1): 89-95. |
[3] | 任立波, 尚立宝, 闫日雄, 何海澜, 赵红霞, 韩吉田. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM数值模拟[J]. 山东大学学报(工学版), 2015, 45(2): 62-66. |
[4] | 赵祥红1,2,沈继忠2*. 基于BiCMOS的高性能CML三值D型触发器的设计[J]. 山东大学学报(工学版), 2013, 43(3): 99-104. |
[5] | 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78-80 . |
[6] | 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16-20 . |
|