您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (4): 116-121.doi: 10.6040/j.issn.1672-3961.0.2018.092

• 机器学习与数据挖掘 • 上一篇    下一篇

氮形态对钝顶螺旋藻深度除氮性能的影响

刘婷,蒋丽,周维芝*   

  1. 山东大学环境科学与工程学院, 山东 济南 250100
  • 收稿日期:2018-03-06 出版日期:2018-08-20 发布日期:2018-03-06
  • 通讯作者: 周维芝(1970— ),女,山东烟台人,教授,博导,博士,主要研究方向为水污染控制. E-mail: wzzhou@sdu.edu.cn E-mail:1689834180@qq.com
  • 作者简介:刘婷(1992— ),女,河北保定人,硕士研究生,主要研究方向为水污染控制.E-mail: 1689834180@qq.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017MEE024);国家自然科学基金资助项目(51178255,41446006)

Effect of nitrogen species on nitrogen removal performance of Spirulina platensis

LIU Ting, JIANG Li, ZHOU Weizhi*   

  1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
  • Received:2018-03-06 Online:2018-08-20 Published:2018-03-06

摘要: 研究合成二级出水中不同氮形态(氨氮、亚硝氮、硝氮、尿素)对钝顶螺旋藻生长及除氮性能的影响。结果表明,钝顶螺旋藻在氮形态不同的模拟二级出水中均可生长并有效去除其中的氮。当二级出水中的氮源分别为氨氮(质量浓度为29.3 mg/L)、硝氮(28.3 mg/L)、亚硝氮(28.6 mg/L)、尿素(29.1 mg/L)时,处理5 d后,总氮的质量浓度分别降至3.5、6.8、4.6、4.0 mg/L。二级出水中75%以上的氮被微藻同化积累在藻体内,仅4%~10%以气态氮形式被去除。为二级出水中氮的深度处理提供了理论依据,为微藻培养提供新方案。

关键词: 钝顶螺旋藻, 氮形态, 氮去除, 氮同化, 二级出水

Abstract: The effects of different nitrogen species(ammonium, nitrite, nitrate, urea)in synthtic secondary effluent on Spirulina platensis growth and nitrogen removal performance was explored. The results showed that Spirulina platensis could grow and effectively remove nitrogen in secondary effluent. After 5 d treatment, concentration of total nitrogen(TN)were decreased to 3.5, 6.8, 4.6, and 4.0 mg/L, respectively, when the nitrogen species were ammonium(29.3 mg/L), nitrite(28.3 mg/L), nitrate(28.6 mg/L)and urea(29.1 mg/L). More than 75% of TN was assimilated in microalgae biomass, and only 4%~10% of TN was removed as gaseous nitrogen. This study provided a theoretical basis for further treatment of nitrogen in secondary effluent, and meanwhile, offered a new solution for microalgae cultivation.

Key words: Spirulina platensis, nitrogen removal, secondary effluent, nitrogen species, nitrogen assimilation

中图分类号: 

  • X52
[1] 史媛媛. 微藻法污水处理研究与进展[J]. 青海科技, 2009(5):58-60.
[2] 佚名. 环境保护部发布《2014年中国环境状况公报》[J]. 中国环境科学, 2015(6):1379-1379.
[3] 司友斌, 王慎强, 陈怀满. 农田氮、磷的流失与水体富营养化[J]. 土壤, 2000(4):188-193.
[4] 方先金. 城镇污水处理厂二级出水深度脱氮研究[J]. 水工业市场, 2012(4):44-46.
[5] DU Rui, CAO Shenbin, WANG Shuying, et al. Performance of partial denitrification(PD)-ANAMMOX process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature[J]. Bioresource Technology, 2016, 219:420-429.
[6] 沈耀良, 孙立柱, 王德兴, 等. 混凝沉淀工艺深度处理污水厂二级出水的混凝剂优化[J]. 中国给水排水, 2007, 23(23):56-62. SHEN Yaoliang, SUN Lizhu, WANG Dexing, et al. Coagulant optimization of cougulation and sedimentation processes for advanced treatment of secondary effluent from municipal WWTP[J]. China Water & Wastewater, 2007, 23(23):56-62.
[7] 杨纪伟, 武燕蕾, 田婵婵, 等. 三维电极法深度处理城市污水处理厂二级出水[J]. 人民黄河, 2011, 33(1):73-74.
[8] ZHOU Weizhi, LI Yating, GAO Yizhan, et al. Nutrients removal and recovery from saline wastewater by Spirulina platensis[J]. Bioresource Technology, 2017, 245:10-17.
[9] 杨小龙, 李文明, 陈燕, 等. 一株好氧反硝化菌的分离鉴定及其除氮特性[J]. 微生物学报, 2011, 51(8):1062-1070. YANG Xiaolong, LI Wenming, CHEN Yan, et al. Identification and denitrification of an aerobic bacterium[J]. Acta Microbiologica Sinica, 2011, 51(8):1062-1070.
[10] WANG Xiaoxia, WANG Shuying, XUE Tonglai, et al. Treating low carbon/nitrogen(C/N)wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal(SNDPR)systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77:191-200.
[11] MANNINA G, CAPODICI M, COSENZA A, et al. Carbon and nutrient biological removal in a university of cape town membrane bioreactor: analysis of a pilot plant operated under two different C/N ratios[J]. Chemical Engineering Journal, 2016, 296:289-299.
[12] 胡章喜, 徐宁, 段舜山. 不同氮源对4种海洋微藻生长的影响[J]. 生态环境学报, 2010, 19(10):2452-2457. HU Zhangxi, XU Ning, DUAN Shunshan. Effects of nitrogen sources on the growth of Heterosigma akashiw, Karenia sp., Phaeocystis globosa and Chaetoceros sp.[J]. Ecology and Environmental Sciences, 2010, 19(10):2452-2457.
[13] GE Shijian, CHAMPAGNE P. Nutrient removal, microalgal biomass growth, harvesting and lipid yield in response to centrate wastewater loadings[J]. Water Research, 2016, 88:604-612.
[14] KLANCHUI A, KHANNAPHO C, PHODEE A, et al. iAK692: A genome-scale metabolic model of Spirulina platensis c1[J]. BMC Systems Biology, 2012, 6:1-15.
[15] PHANG S M, MIAH M S, YEOH B G, et al. Spirulina cultivation in digested sago starch factory wastewater[J]. Journal of Applied Phycology, 2000, 12:395-400.
[16] CHANG Yuanyuan, WU Zucheng, BIAN Lei, et al. Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine[J]. Applied Energy, 2013, 102:427-431.
[17] GODIA F, ALBIOL J, MONTESINOS J, et al. MELISSA: a loop of interconnected bioreactors to develop life support in space[J]. Journal of Biotechnology, 2002, 99(3):319-330.
[18] 国家环境保护总局科技标准司. 城镇污水处理厂污染物排放标准:GB18918—2002[S/OL]. 北京:中国环境出版社, 2001:3-4. [2006-01-01]. https://wenku. baidu. com/view/e522aeb24693daef5ef73dcc.html.
[19] 魏复盛, 齐文启. 水和废水的分析检测方法[M]. 北京:中国环境科学出版社, 2002:254-284.
[20] ANDRADE M R, COSTA J A. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate[J]. Aquaculture, 2007, 264(1):130-134.
[21] DEPRAETERE O, PIERRE G, DESCHOENMAEKER F, et al. Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling[J]. Bioresource Technology, 2015, 180:16-21.
[22] PARK Y I, LABRECQUE M, LAVOIE J M. Influence of elevated CO2 and municipal wastewater feed on the productivity, morphology, and chemical composition of Arthrospira(Spirulina)platensis[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11):1348-1356.
[23] CAI Ting, PARK S, LI Yebo. Nutrient recovery from wastewater streams by microalgae: status and prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 19:360-369.
[24] BLOOM A J, SUKRAPANNA S S, WARNER R L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley[J]. Plant Physiol, 1992, 99(4):1294-1301.
[25] GARCIA J, MUJERIEGO R, HERNANDEZ M. High rate algal pond operating strategies for urban wastewater nitrogen removal[J]. Journal of Applied Phycology, 2000, 12:331-339.
[26] 庄源益, 戴树桂, 张明顺. 水中氨氮挥发影响因素探讨[J]. 环境化学, 1995, 14(4):343-346. ZHUANG Yuanyi, DAI Shugui, ZHANG Mingshun. A preliminary study on factors influened the volatilization of ammonia from water[J]. Environmental Chemistry, 1995, 14(4):343-346.
[27] MARKOU G, GEORGAKAKIS D. Cultivation of filamentous cyanobacteria(blue-green algae)in agro-industrial wastes and wastewaters: a review[J]. Applied Energy, 2011, 88(10):3389-3401.
[1] 王振德,黄兆松,蒋丽,周维芝. 铁载体在假交替单胞菌Cd2+去除中的作用[J]. 山东大学学报(工学版), 2018, 48(4): 122-127.
[2] 张双圣,强静,刘喜坤,刘汉湖,朱雪强. 基于贝叶斯-微分进化算法的污染源识别反问题[J]. 山东大学学报(工学版), 2018, 48(1): 131-136.
[3] 孙翠平, 周维芝, 赵海霞. 铁强化微生物除磷的效能及机理[J]. 山东大学学报(工学版), 2015, 45(2): 82-88.
[4] 时琼,梁爽,王曙光*. 零价铁联合微生物去除水中高氯酸盐的研究[J]. 山东大学学报(工学版), 2012, 42(6): 107-114.
[5] 赵文杰, 孙雪菲, 丁可, 王曙光. 一种新型改性交联壳聚糖的制备及其对废水中四环素的去除机理[J]. 山东大学学报(工学版), 2014, 44(5): 65-71.
[6] 肖方, 黄德毅, 岳钦艳, 许醒, 高宝玉, 王文刚. 新型Fe0/C复合材料的制备及处理丙烯腈废水的研究[J]. 山东大学学报 (工学版), 2020, 50(4): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王汝贵,蔡敢为 . 两自由度可控平面连杆机构机电耦合系统的超谐波共振分析[J]. 山东大学学报(工学版), 2008, 38(3): 58 -63 .
[2] 贾超,赵建宇,徐帮树,岳长城,李树忱 . 清水隧道围岩软土振动液化研究[J]. 山东大学学报(工学版), 2008, 38(1): 83 -87 .
[3] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[4] 邓斌,王江 . 基于混沌同步与自适应控制的神经元模型参数估计[J]. 山东大学学报(工学版), 2007, 37(5): 19 -23 .
[5] 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[8] 李国正1,史淼晶1,李福凤2,王忆勤2. 舌体图像分割技术的实验分析与改进[J]. 山东大学学报(工学版), 2010, 40(5): 87 -95 .
[9] 张波,李术才,杨学英,王锡平,张敦福 . 含两个圆形孔洞岩盐路基稳定性的数值分析[J]. 山东大学学报(工学版), 2008, 38(1): 66 -69 .
[10] 胡天亮1 ,张承瑞1 ,杨林1 ,武洪恩2 . 一种高速可配置实时总线的开发及其应用[J]. 山东大学学报(工学版), 2009, 39(1): 96 -101 .