您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (4): 108-113.doi: 10.6040/j.issn.1672-3961.0.2019.175

• 化学与环境 • 上一篇    

新型Fe0/C复合材料的制备及处理丙烯腈废水的研究

肖方1, 黄德毅2, 岳钦艳3*, 许醒3, 高宝玉3, 王文刚4   

  1. 1. 山东省菏泽生态环境监测中心, 山东 菏泽 274200;2. 齐鲁工业大学(山东省科学院)山东省分析测试中心, 山东 济南 250014;3. 山东大学环境科学与工程学院, 山东 青岛 266237;4. 山东省环境保护科学研究设计院有限公司, 山东 济南 250013
  • 发布日期:2020-08-13
  • 作者简介:肖方(1985— ),女,山东菏泽人,硕士研究生,主要研究方向为工业水处理. E-mail:Z4fang@163.com. *通信作者简介:岳钦艳(1958— ),女,山东菏泽人,教授,博导,主要研究方向为固体废物资源化和工业水处理. E-mail:qyyue@sdu.edu.cn
  • 基金资助:
    山东省重大科技创新工程项目(2018CXGC1010)

Fabrication of Fe0/C composite and its application for acrylonitrile wastewater treatment

XIAO Fang1, HUANG Deyi2, YUE Qinyan3*, XU Xing3, GAO Baoyu3, WANG Wengang4   

  1. 1. Heze City Environment Monitoring Centre, Heze 274200, Shandong, China;
    2. Shandong Analysis and Test Center, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250014, Shandong, China;
    3. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China;
    4. Shandong Academy of Environmental Science Co., Ltd., Jinan 250013, Shandong, China
  • Published:2020-08-13

摘要: 制备新型免烧型Fe0/C功能材料作为微电解反应器的填料处理丙烯腈废水。考察反应器进水丙烯腈废水的pH值、水力停留时间(hydraulic retention time, HRT)和曝气量等因素对丙烯腈降解效率的影响,并明确反应器的最佳运行参数;结合反应器的连续运行工况,考察制备的Fe0/C复合材料的稳定性及抗板结性能。结果表明,制备出的Fe0/C复合材料具有较好的强度,可以满足微电解填料应用于水处理的要求。最佳运行工况下,Fe0/C复合材料对化学需氧量CODCr和丙烯腈的去除效率可达65.8%和70.4%。反应器在连续运行过程中出水稳定;Fe0/C复合材料在反应器运行过程的稳定性良好,没有发生板结。

关键词: 微电解, 反应器, 丙烯腈, 免烧, 抗板结

Abstract: Un-sintered type Fe0/C composite was prepared in this study to be used as the micro-electrolysis fillers for acrylonitrile wastewater treatment. Effects of influent pH, hydraulic retention time(HRT)and aeration rate on chemical oxygen demand(CODCr)and acrylonitrile removal efficiency were investigated to determine the optimal conditions. The results indicated that the strength of Fe0/C composite met the water treatment fillers requirements. Acrylonitrile wastewater was treated by the un-sintered type Fe0/C composite at optimal operating conditions(influent pH of 3, HRT of 6 h and aeration rate of 0.2 L/min), and the removal efficiencies of CODCr and acrylonitrile were calculated to be 65.8% and 70.4%, respectively. During the successive running of micro-electrolysis reactor, the treating performance for acrylonitrile wastewater was stable without the harden of Fe0/C composite.

Key words: micro-electrolysis, reactor, acrylonitrile, un-sintered, anti-harden

中图分类号: 

  • X52
[1] 张凯, 唐景春, 吴颖, 等. 丙烯腈废水及几种处理工艺出水的毒性[J]. 环境工程学报, 2014, 8(7): 2809-2816. ZHANG Kai, TANG Jingchun, WU Ying, et al. Toxicity of acrylonitrile wastewater and several effluents from different treatment processes[J].Chinese Journal of Environmental Engineering, 2014, 8(7): 2809-2816.
[2] LAI Bo, ZHOU Yuexi, QIN Hongke, et al. Pretreatment of wastewater from acrylonitrile—butadiene—styrene(ABS)resin manufacturing by microelectrolysis[J]. Chemical Engineering Journal, 2012, 179: 1-7.
[3] BEHL M, ELMORE S A, MALARKEY D E, et al. Perinatal toxicity and carcinogenicity studies of styrene-acrylonitrile trimer, a ground water contaminant[J]. Toxicology, 2013, 314(1): 84-94.
[4] JIN Yang, YUE Qinyan, YANG Kunlun, et al. Pre-treatment of pyridine wastewater by new cathodic—anodic-electrolysis packing[J]. Journal of Environmental of Sciences, 2018, 63: 43-49.
[5] ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402-410.
[6] ZHENG Dongju, CAI Weibin, WANG Tao, et al. Pilot-scale integrated membrane system for the treatment of acrylonitrile wastewater[J]. Desalination, 2015, 357: 215-224.
[7] 沈筱彦, 苑丹丹. 丙烯腈废水处理技术研究进展[J]. 化工科技, 2016, 24(3): 76-80. SHEN Xiaoyan, YUAN Dandan. Summarization of several methods applied to acrylonitrile wastewater treatment[J]. Science & Technology in Chemical Industry, 2016, 24(3): 76-80.
[8] 褚兆晶, 徐婷, 郭景, 等. 电化学氧化处理丙烯腈废水及对可生化性的提高[J]. 生态环境学报, 2010, 19(8): 1956-1959. CHU Zhaojing, XU Ting, GUO Jing, et al. The improvement of acrylonitrile wastewater biodegradability by means of electrochemical oxidation[J]. Ecology and Environment Sciences, 2010, 19(8):1956-1959.
[9] 张默贺, 叶正芳, 赵泉林, 等. 铁碳微电解预处理TNT红水[J]. 环境工程学报, 2012, 6(9): 3115-3120. ZHANG Mohe, YE Zhengfang, ZHAO Quanlin, et al. Pretreatment of TNT red water by iron-carbon micro-electrolysis process[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3115-3120.
[10] AO Lianggen, XIA Fan, REN Yang, et al. Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon[J]. Chemical Engineering Journal, 2019, 357: 180-187.
[11] NA Chunhong, ZHANG Ying, DENG Minjie, et al. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank(A/O-ABFT)process: acute toxicity and zebrafish embryo toxicity[J]. Chemosphere, 2016, 154: 1-7.
[12] 朱泉雯. 铁碳微电解法在废水预处理过程中的应用现状及前景[J]. 科技资讯, 2011, 2: 118-118. ZHU Quanwen. Application status and prospect of Fe/C microelectrolysis in wastewater pretreatment[J]. Science & Technology Information, 2011, 2: 118-118.
[13] 陈松鹤. 微电解在工业废水处理中研究进展[J]. 广东化工, 2019, 46(8): 118-119. CHEN Songhe. Review of micro-electrolysis in industrial wastewater treatment[J]. Guangdong Chemical Industry, 2019, 46(8): 118-119.
[14] 周培国, 傅大放. 微电解工艺研究进展[J]. 环境污染治理技术与设备, 2001, 2(4): 18-24. ZHOU Peiguo, FU Dafang. Application and development for microelectrolysis technology[J]. Techniques and Equipment for Environmental Pollution Control, 2001, 2(4): 18-24.
[15] HUANG Deyi, YUE Qinyan, FU Kaifang, et al. Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers[J]. Desalination & Water Treatment, 2016, 57(10): 4420-4428.
[16] 张晓伟. 微电解陶粒在染料模拟废水处理方面的应用[D]. 济南:山东大学, 2013. ZHANG Xiaowei. Application of the micro-electrolysis ceramics on treatment of synthetic dye waste water[D]. Jinan: Shandong University, 2013.
[17] 张晓伟, 岳钦艳, 吴苏青, 等. 阴阳陶粒在酸性大红GR模拟废水处理中的应用[J]. 工业水处理, 2013, 33(4): 51-54. ZHANG Xiaowei, YUE Qinyan, WU Suqing, et al. Application of Fe0/C/clay ceramics to the treatment of simulated Acid scarlet GR wastewater[J]. Industrial Water Treatment, 2013, 33(4): 51-54.
[18] ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis[J]. Frontiers of Environmental Science & Engineering, 2015, 9(3): 402-410.
[19] 张晓伟, 岳钦艳, 岳东亭, 等. Fe0-C-Clay陶粒用于亚甲基蓝模拟废水处理的研究[J]. 环境工程, 2013, 31(4): 13-16,84. ZHANG Xiaowei, YUE Qinyan, YUE Dongting, et al. Application of novel micro-electrolysis fillers: Fe0-C-Clay ceramicite in the treatment of methylene blue simulated wastewater[J]. Environmental Engineering, 2013, 31(4): 13-16,84.
[20] 韩严和, 武梦雨, 李菡, 等. 铁碳微电解处理染料污水的影响因素筛选与优化[J]. 环境科学研究, 2016, 29(8): 1180-1186. HAN Yanhe, WU Mengyu, LI Han, et al. Factor screening and response surface optimization of the treatment of dye wastewater using iron-carbon micro-eElectrolysis[J]. Research of Environmental Sciences, 2016, 29(8): 1180-1186.
[21] 王宇峰, 俞言文, 杨尚源, 等. 铁碳微电解耦合芬顿高级氧化技术对高盐废水COD去除性能的影响研究[J]. 水处理技术, 2017, 43(6): 65-67. WANG Yufeng, YU Yanwen, YANG Shangyuan, et al. Effect of iron-carbon micro-electrolysis coupled with fenton oxidation technology on COD removal performance in high salinity wastewater[J]. Technology of Water Treatment, 2017, 43(6): 65-67.
[22] 周立峰, 费学宁, 李婉晴, 等. 铁碳微电解预处理制药废水的实验研究[J]. 环境科学与管理, 2010, 35(5): 101-102. ZHOU Lifeng, FEI Xuening, LI Wanqing, et al. Pretreatment of high concentration of pharmaceutical wastewater by iron-carbon micro-electrolysis[J]. Environmental Science and Management, 2010, 35(5): 101-102.
[1] 李发站,张帅,张建,梁爽. C-CBR一体化生物反应器处理农村生活污水研究[J]. 山东大学学报(工学版), 2018, 48(1): 124-130.
[2] 刘艳璞 施来顺 巴换粉 郭芳. 等离子体引发接枝聚合丙烯腈对聚乙烯表面改性的研究[J]. 山东大学学报(工学版), 2009, 39(5): 124-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!