山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 131-136.doi: 10.6040/j.issn.1672-3961.0.2017.146
• • 上一篇
张双圣1,2,强静3*,刘喜坤2,刘汉湖1,朱雪强1
ZHANG Shuangsheng1,2, QIANG Jing3*, LIU Xikun2, LIU Hanhu1, ZHU Xueqiang1
摘要: 针对污染源瞬时排放的河流水污染事件反问题,通过贝叶斯统计方法和二维水质对流-扩散方程,建立水体污染识别模型,得到关于污染源强度、污染源位置和污染源排放时刻3个未知参数的后验概率密度函数。运用最大似然估计的思想,采用微分进化算法,求解使后验概率密度函数达到最大值的参数,作为模型未知参数的估计值。算例表明:运用贝叶斯微分进化算法,3个未知参数估计值迭代50次时可以达到稳定,当迭代次数达到280次时,可与真值完全重合;与贝叶斯-蒙特卡洛法相比,贝叶斯-微分进化算法可使3个未知参数估计值达到稳定时的迭代次数降低97.5%,均值误差分别减少1.69%、2.12%和4.03%,具有收敛快、精度高的特点。
中图分类号:
[1] WEI H, CHEN W, SUN H, et al. A coupled method for inverse source problem of spatial fractional anomalous diffusion equations[J]. Inverse Problems in Science and Engineering, 2010, 18(7): 945-956. [2] JHA M, DATTA B. Three-dimensional groundwater contamination source identification using adaptive simulated annealing[J]. Journal of Hydrologic Engineering, 2012, 18(3): 307-317. [3] HOLLAND J. Adaptation in natural and artificial systems [M]. Ann Arbor: University of Michigan Press, 1975. [4] RUZEK B, KVASNICKA M. Differential evolution algorithm in the earthquake hypocenter location[J]. Pure and Applied Geophysics, 2001, 158(4): 667-693. [5] 赵光权. 基于贪婪策略的微分进化算法及其应用研究 [D].哈尔滨:哈尔滨工业大学, 2007. ZHAO Guangquan. Differential evolution algorithm with greedy strategy and its applications[D]. Harbin: Harbin Institute of Technology, 2007. [6] 苏海军, 杨煜普, 王宇嘉. 微分进化算法的研究综述[J].系统工程与电子技术, 2008, 30(9):1793-1797. SU Haijun, YANG Yupu, WANG Yujia. Research on differential evolution algorithm: a survey[J]. Systems Engineering and Electronics, 2008, 30(9):1793-1797. [7] STRON R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4):341-359. [8] ABBASS H A. The self-adaptive Pareto differential evolution algorithm[C] //Proceedings of 2002 IEEE Congress on Evolutionary Computation. Honolulu, USA: IEEE, 2002:831-836. [9] STRON R, PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution[C] //IEEE International Conference on Evolutionary Computation. Nagoya, Japan:IEEE, 1996:842-844. [10] BECERRA R, COELLO C. Cultured differential evolution for constrained optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(33-36):4303-4322. [11] BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transaction on Evolutionary Computation, 2006, 10(6):646-657. [12] FAN H, LAMPINEN J. A trigonometric mutation operation to differential evolution[J]. Journal of Global Optimization, 2003, 27(1):105-129. [13] CHAKRABORY U, DAS S, KONAR A. Differential evolution with local neighborhood[C] //IEEE Congress on Evolutionary Computation. Vancouver, Canada:IEEE, 2006:2042-2049. [14] 郝竹林, 冯民权, 闵涛, 等. 地下水渗流参数反演的微分进化算法[J].自然灾害学报, 2015, 24(1):55-60. HAO Zhulin, FENG Minquan, MIN Tao, et al. Differential evolution algorithm for parameter inversion of groundwater seepage flow[J]. Journal of Natural Disasters, 2015, 24(1):55-60. [15] 刘英霞, 王希常, 唐晓丽, 等. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2):63-70. LIU Yingxia, WANG Xichang, TANG Xiaoli, et al. Object detection algorithm based on Bayesian probability estimation in wavelet domain[J]. Journal of Shandong University(Engineering Sciences), 2017, 47(2):63-70. [16] HAARIO H, SAKSMAN E, TAMMINEN J. An adaptive metropolis algorithm[J]. Bernoulli, 2001, 7(2): 223-242. [17] ZENG L, SHI L, ZHANG D, et al. A sparse grid based Bayesian method for contaminant source identification[J]. Advances in Water Resources, 2012, 37(1):1-9. [18] 王海军, 葛红娟, 张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J].山东大学学报(工学版), 2016, 46(3):14-22. WANG Haijun, GE Hongjuan, ZHANG Shengyan. Object tracking via L1 norm and least soft-threshold square[J]. Journal of Shandong University(Engineering Sciences), 2016, 46(3):14-22. [19] 曹瑛, 王明文, 陶亮. 基于Markov 网络的检索模型[J]. 山东大学学报(理学版), 2006, 41(3):126-130. CAO Ying, WANG Mingwen, TAO Liang. Information retrieval model based on Markov network[J]. Journal of Shandong University(Natural Science), 2006, 41(3):126-130. [20] 曾平, 王婷. 贝叶斯错误发现率[J]. 山东大学学报(医学版), 2012, 50(3):120-124. ZENG Ping, WANG Ting. Bayesian false discovery rate[J]. Journal of Shandong University(Health Sciences), 2012, 50(3):120-124. [21] 陈海洋, 腾彦果, 王金生, 等. 基于Bayesian-MCMC方法的水体污染识别反问题[J]. 湖南大学学报(自然科学版), 2012, 39(6):74-78. CHEN Haiyang, TENG Yanguo, WANG Jinsheng, et al. Event source identification of water pollution based on Bayesian-MCMC[J]. Journal of Hunan University(Natural Sciences), 2012, 39(6):74-78. [22] 杨海东, 肖宜, 王卓民, 等.突发性水污染事件溯源方法[J].水科学进展, 2014, 25(1):122-128. YANG Haidong, XIAO Yi, WANG Zhuomin, et al. On source identification method for sudden water pollution accidents[J]. Advances in Water Science, 2014, 25(1):122-128. [23] 闵涛, 周孝德, 张世梅, 等. 对流-扩散方程源项识别反问题的遗传算法[J]. 水动力学研究与进展, A辑, 2004, 19(4):520-524. MIN Tao, ZHOU Xiaode, ZHANG Shimei, et al. Genetic algorithm to an inverse problem of source term identification for convection-diffusion equation[J]. Journal of Hydrodynamics(Ser.A), 2004, 19(4):520-524. [24] 牟行洋.基于微分进化算法的污染物源项识别反问题研究[J]. 水动力学研究与进展(A辑), 2011, 26(1):24-30. MOU Xingyang. Research on inverse problem of pollution source term identification based on differential evolution algorithm[J]. Journal of Hydrodynamics(Ser.A), 2011, 26(1):24-30. [25] 郑春苗, BENNETT G D. 地下水污染物迁移模拟(第二版)[M]. 北京:高等教育出版社, 2009:70-79. |
[1] | 王振德,黄兆松,蒋丽,周维芝. 铁载体在假交替单胞菌Cd2+去除中的作用[J]. 山东大学学报(工学版), 2018, 48(4): 122-127. |
[2] | 刘婷,蒋丽,周维芝. 氮形态对钝顶螺旋藻深度除氮性能的影响[J]. 山东大学学报(工学版), 2018, 48(4): 116-121. |
[3] | 孙翠平, 周维芝, 赵海霞. 铁强化微生物除磷的效能及机理[J]. 山东大学学报(工学版), 2015, 45(2): 82-88. |
[4] | 时琼,梁爽,王曙光*. 零价铁联合微生物去除水中高氯酸盐的研究[J]. 山东大学学报(工学版), 2012, 42(6): 107-114. |
[5] | 赵文杰, 孙雪菲, 丁可, 王曙光. 一种新型改性交联壳聚糖的制备及其对废水中四环素的去除机理[J]. 山东大学学报(工学版), 2014, 44(5): 65-71. |
|