您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 89-95.doi: 10.6040/j.issn.1672-3961.0.2017.273

• • 上一篇    下一篇

基于L2范数最小估计的无人机飞控系统故障检测

陈杰1,钟麦英2*,张利刚3   

  1. 1. 北京航空航天大学仪器科学与光电工程学院, 北京 100191;2. 山东科技大学电气与自动化工程学院, 山东 青岛 266590;3. 北京航空航天大学无人系统研究院, 北京100191
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 钟麦英(1965— ),女,山东淄博人,教授,博士生导师,主要研究方向为故障诊断.E-mail: myzhong@buaa.edu.cn E-mail:jiechen@buaa.edu.cn
  • 作者简介:陈杰(1994— ),男,陕西汉中人,博士研究生,主要研究方向为故障诊断.E-mail: jiechen@buaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61333005,61421063);山东省泰山学者优势特色学科人才团队资助项目

Fault detection of unmanned aerial vehicle flight control system based on optimal estimation of the L2-norm

CHEN Jie1, ZHONG Maiying2*, ZHANG Ligang3   

  1. 1. School of Instrument Science and Opto-electronic Engineering, Beihang University, Beijing 100191, China;
    2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China;
    3. Unmanned Systems Research Institute, Beihang University, Beijing 100191, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 为了实现无人机飞行控制系统的快速在线故障检测,提出一种基于L2范数最小估计的无人机非线性飞行控制系统快速故障检测方法。 建立无人机飞行控制系统的非线性故障模型,并将未知输入的L2范数最小估计值作为残差评价函数,对系统故障进行检测。在针对线性离散时变系统故障检测方法研究的基础上,利用Krein空间投影实现残差评价函数的递推计算以减小故障检测计算量。 以无人机升降舵及速率陀螺故障检测为例,对算法进行仿真试验验证。试验结果表明:该方法可以快速有效的实现无人机飞行控制系统故障检测,为无人机的安全飞行提供可靠的保障。

关键词: 非线性系统, 无人机, 故障检测, 最小估计, 未知输入

Abstract: In order to realize the rapid online failt detection of unmanned aerial vehicle(UAV)flight control system, a fault detection approach based on optimal estimation of the L2-norm was proposed to the fault detection(FD)of UAV nonlinear flight control system. The nonlinear fault model of UAV flight control system was established, and an optimal estimation of the L2-norm of the unknowninputs was found to be the evaluation function for FD. On the foundation of the approach for linear discrete time-varying systems, the projection in Krein space was applied to calculate the evaluation function recursively, and thus the heavy online computational burden could be solved. The FD for UAV elevator and rate gyros was taken as an example to demonstrate the effectiveness of the proposed method. The results showed that the faults of the UAV flight control system could be detected rapidly through the proposed approach, and the safety of UVA could be guaranteed reliably.

Key words: nonlinear systems, optimal estimation, unmanned aerial vehicle, unknown inputs, fault detection

中图分类号: 

  • TP206
[1] QIAN M S, JIANG B, LIU H T. Dynamic surface active fault tolerant control design for the attitude control systems of UAV with actuator fault[J]. International Journal of Control Automation & Systems, 2016, 14(3):723-732.
[2] KIM S H, NEGSH L, CHOI H L. Cubature Kalman filter based fault detection and isolation for formation control of multi-UAVs[J]. IFAC-Papers OnLine, 2016, 49(15):63-68.
[3] CORK L, WALKER R. Sensor fault detection for UAVs using a nonlinear dynamic model and the IMM-UKF algorithm[C] //Information, Decision and Control.[s.n.] :IEEE, 2007:230-235.
[4] HANSEN S, BLANKE M. Diagnosis of Airspeed Measurement Faults for Unmanned Aerial Vehicles[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(1):224-239.
[5] YANG Y, DING S X, LI L. Parameterization of nonlinear observer-based fault detection systems[J]. IEEE Transactions on Automatic Control, 2016,61(11):3687-3692.
[6] LIU X, GAO X, JIAN H. Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances[J]. Isa Transactions, 2016, 61:15-28.
[7] BELLALI B, HAZZAB A, BOUSSERHANE I K, et al. Parameter estimation for fault diagnosis in nonlinear systems by ANFIS[J]. Procedia Engineering, 2016, 29(4):2016-2021.
[8] WU C, QI J, SONG D, et al. Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter[J]. International Journal of Applied Mathematics & Computer Science, 2015, 25(1):175-187.
[9] ZHAI S, WANG W, YE H. Fault diagnosis based on parameter estimation in closed-loop systems[J]. Control Theory & Applications Iet, 2015, 9(7):1146-1153.
[10] ZHONG M, DING S X, HAN Q L, et al. Parity space-based fault estimation for linear discrete Time-Varying systems[J]. IEEE Transactions on Automatic Control, 2010, 55(7):1726-1731.
[11] LEE W H, KIM K H, CHAN G P, et al. Two-faults detection and isolation using extended parity space approach[J]. Journal of Electrical Engineering & Technology, 2012, 7(3):411-419.
[12] DING S X, DING E L, JEINSCH T, et al. An approach to a unified design of FDI systems[C] // Proc of the 3rd Asian Control Conference. Shanghai, China:2000:2812-2817.
[13] ZHONG M Y, DING S X, ZHOU D H. A new scheme of fault detection for linear discrete Time-Varying systems[J]. IEEE Transactions on Automatic Control, 2016, 61(9):2597-2602.
[14] WANG Z, RODRIGUES M, THEILLIOL D, et al. Faultestimation for a class of discrete-time nonlinear system[C] // Preprints of the 19th World Conress. the IFAC. Cape Town, South Africa, 2014:8018-8023.
[15] ZHONG M Y, DING S X, DING E L. Optimal fault detection for linear discrete time-varying systems[J]. Automatica, 2010, 46(8): 1395-1400.
[16] ZHONG M Y, LIU H, SONG N F. On designing an extended H-/H FDF for a class of nonlinear systems[C] // The 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes.[S.L.] , IEEE, 2015:707-712.
[17] KAILATH T, SAYED A H, HASSIBI B. Linear Estimation[M]. New Jersey: Prentice Hall, 1999.
[18] 刘晓东, 钟麦英, 柳海. 基于EKF的无人机飞行控制系统故障检测[J]. 上海交通大学学报, 2015, 49(6):884-888. LIU Xiaodong, ZHONG Maiying, LIU Hai. EKF-Based fault detection of unmanned aerial vehicle flight control system[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6):884-888.
[1] 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43.
[2] 杨瑞. 基于稀疏表示的间歇故障检测方法及仿真[J]. 山东大学学报(工学版), 2017, 47(5): 51-56.
[3] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[4] 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135.
[5] 陈志文, 彭涛, 阳春华, 何章鸣,杨超, 杨笑悦. 基于改进的典型相关分析的故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 44-50.
[6] 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129.
[7] 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156.
[8] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[9] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[10] 王飞飞1,闫雪华2*,刘允刚3. 一类控制系数未知非线性参数化系统的
输出反馈实际跟踪控制
[J]. 山东大学学报(工学版), 2013, 43(5): 55-67.
[11] 尚芳 刘允刚 张承慧. 一类不确定非线性系统输出反馈扰动抑制[J]. 山东大学学报(工学版), 2010, 40(1): 19-27.
[12] 张健 刘允刚. 一类不确定高阶随机非线性系统的自适应镇定[J]. 山东大学学报(工学版), 2009, 39(6): 35-47.
[13] 周风余,单金明,王伟,陈景帅,阮久宏. 基于ADRC的船舶航向控制器设计与仿真研究[J]. 山东大学学报(工学版), 2009, 39(1): 57-62.
[14] 方 挺,杨 忠,沈春林 . 无人机编队视频序列中的多目标精确跟踪[J]. 山东大学学报(工学版), 2008, 38(4): 22-26 .
[15] 贾秀芹,刘允刚 . 非线性系统的 H部分状态观测器设计[J]. 山东大学学报(工学版), 2007, 37(5): 40-46 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!