山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 51-56.doi: 10.6040/j.issn.1672-3961.0.2017.238
杨瑞
YANG Rui
摘要: 基于间歇故障在某些域的稀疏性,提出一种基于稀疏表示的间歇故障检测方法。利用系统输出数据构造系统的过完备字典,设计间歇故障检测阈值,并对过完备字典和故障检测阈值进行在线更新。此方法适合动态系统的间歇故障检测,并通过仿真结果进行验证,并比较在不同更新策略下的仿真结果。
中图分类号:
[1] MEHRA R K, PESCHON J. An innovations approach to fault detection and diagnosis in dynamic systems[J]. Automatica, 1971, 7(5): 637-640. [2] ZHONG M, ZHOU D, DING S X. On designing fault detection filter for linear discrete time-varying systems[J]. IEEE Transactions on Automatic Control, 2010, 55(7): 1689-1695. [3] 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报, 2014, 40(2): 161-171. ZHOU Donghua, SHI Jiantao, HE Xiang. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2): 161-171. [4] CORRECHER A, GARCÍA E, MORANT F, et al. Intermittent failure dynamics characterization[J]. IEEE Transactions on Reliability, 2012, 61(3): 649-658. [5] 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758. ZHOU Donghua, HU Yanyan. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6): 748-758. [6] CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223. [7] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [8] 栗茂林, 梁霖, 王孙安. 基于稀疏表示的故障敏感特征提取方法[J]. 机械工程学报, 2013, 49(1): 73-80. LI Maolin, LIANG Lin, WANG Sun'an. Sensitive feature extraction of machine faults based on sparse representation[J]. Journal of Mechanical Engineering, 2013, 49(1): 73-80. [9] CHAKRABORTY S, CHATTERJEE A, GOSWAMI S K. A sparse representation based approach for recognition of power system transients[J]. Engineering Applications of Artificial Intelligence, 2014, 30: 137-144. [10] 张晗, 杜朝辉, 方作为, 等. 基于稀疏分解理论的航空发动机轴承故障诊断 [J]. 机械工程学报, 2015, 51(1): 97-105. ZHANG Han, DU Zhaohui, FANG Zuowei, et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2015, 51(1): 97-105. [11] CHEN X, DU Z, LI J, et al. Compressed sensing based on dictionary learning for extracting impulse components[J]. Journal of Mechanical Engineering Signal Processing, 2014, 96:94-109. [12] TANG G, HOU W, WANG H, et al. Compressive sensing of roller bearing faults via harmonic detection from under-sampled vibration signals[J]. Sensors, 2015, 15(10): 25648-25662. [13] 彭富强, 于德介, 罗洁思, 等. 基于多尺度线调频基稀疏信号分解的轴承故障诊断[J]. 机械工程学报, 2010, 46(7): 88-95. PENG Fuqiang, YU Dejie, LUO Jiesi, et al. Sparse signal decomposition method based on multi-scale chirplet and its application to bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2010, 46(7):88-95. [14] WANG Y, XIANG J, MO Q, et al. Compressed sparse time—frequency feature representation via compressive sensing and its applications in fault diagnosis[J]. Measurement, 2015, 68: 70-81. [15] 李娟, 周东华, 司小胜, 等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, 29(12):1517-1529. LI Juan, ZHOU Donghua, SI Xiaosheng, et al. Review of incipient fault diagnosis methods[J]. Control Theory & Applications, 2012, 29(12):1517-1529. [16] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1): 88-94. WANG Hongchao, CHEN Jin, DONG Guangming. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1):88-94. [17] TANG H, CHEN J, DONG G. Sparse representation based latent components analysis for machinery weak fault detection [J]. Mechanical Systems and Signal Processing, 2014, 46(2):373-388. [18] HE X, HU Y, PENG K. Intermittent fault detection for uncertain networked systems[J]. Mathematical Problems in Engineering, 2013, 2013(1):1-10. [19] TAO Y, SHEN D, FANG M, et al. Reliable H∞ control of discrete-time systems against random intermittent faults[J]. International Journal of Systems Science, 2016, 47(10): 2290-2301. [20] TAO Y, SHEN D, WANG Y, et al. Reliable H∞ control for uncertain nonlinear discrete-time systems subject to multiple intermittent faults in sensors and/or actuators [J]. Journal of the Franklin Institute, 2015, 352(11): 4721-4740. [21] DENG G, QIU J, LIU G, et al. A novel fault diagnosis approach based on environmental stress level evaluation [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(5): 816-826. [22] CORRECHER A, GARCÍA E, MORANT F, et al. Intermittent failure dynamics characterization[J]. IEEE transactions on reliability, 2012, 61(3): 649-658. |
[1] | 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43. |
[2] | 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135. |
[3] | 陈志文, 彭涛, 阳春华, 何章鸣,杨超, 杨笑悦. 基于改进的典型相关分析的故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 44-50. |
[4] | 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129. |
[5] | 陈杰,钟麦英,张利刚. 基于L2范数最小估计的无人机飞控系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 89-95. |
[6] | 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156. |
[7] | 王海军,葛红娟,张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J]. 山东大学学报(工学版), 2016, 46(3): 14-22. |
[8] | 夏海英1,杜海明2,徐鲁辉1,颜远辉1. 基于自适应词典学习和稀疏表示的人脸表情识别[J]. 山东大学学报(工学版), 2014, 44(1): 45-48. |
[9] | 林哲1,闫敬文2,袁野2. 基于稀疏表示和PCNN的多模态图像融合[J]. 山东大学学报(工学版), 2013, 43(4): 13-17. |
[10] | 季涛,孙同景,徐丙垠,孙波 . 直流系统接地故障综合检测方法[J]. 山东大学学报(工学版), 2006, 36(1): 55-59 . |
|