您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 123-129.doi: 10.6040/j.issn.1672-3961.0.2017.166

• • 上一篇    下一篇

一种模式关联主元分析的海流机故障检测方法

张米露,王天真*,汤天浩,辛斌   

  1. 上海海事大学电气自动化系, 上海 201306
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 王天真(1978— ),女,山东青岛人,教授,主要研究方向为智能信息处理与故障诊断. E-mail:wtz0@sina.com E-mail:zhangmilu@126.com
  • 作者简介:张米露(1988— ),男,山东枣庄人,博士研究生,主要研究方向为海流发电系统建模与故障诊断. E-mail:zhangmilu@126.com
  • 基金资助:
    国家自然科学基金资助项目(61673260);上海市自然科学基金资助项目(16ZR1414300)

A mode-correlation principal component analysis for the fault detection of marine current turbine

ZHANG Milu, WANG Tianzhen*, TANG Tianhao, XIN Bin   

  1. Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 针对海流机复杂工况下发电过程数据的多模式和模式频繁变动的问题,提出一种模式关联主元分析方法。从理论上分析模式变化对传统主元分析(principal component analysis, PCA)的影响,描述了过程数据多模式下的故障检测问题。提出一种模式标准化算法,动态拟合多模式数据特征。通过构建多模式关联关系,将变化模式引起的统计量差值剔除。通过搭建海流机试验平台,对比所提方法与传统检测方法验证了所提方法的有效性。理论分析和试验结果表明:在海流机变转速同时变载荷工况下,所提方法能够快速准确的检测出故障。

关键词: 模式关联主元分析, 动态时间错位, 故障检测, PCA回归

Abstract: To solve the problem of multi-mode characteristic and frequent mode changes, a detection method for marine current turbine which called mode-correlation principal component analysis was proposed. The influence of modal change on the traditional principal component analysis(PCA)was analyzed in theory. The detection problem caused by multi-mode characteristic was described. A mode normalized algorithm was proposed in the proposed method to dynamic fitting the mode. The statistical difference value of different modes was removed due to relationships between modes. Compared with other methods, the experimental platform was built to verify the effectiveness of the proposed method. Theoretical analysis and experimental results showed that the proposed method could detect the fault quickly and accurately under the condition of variable speed and variable load.

Key words: mode-correlation PCA, dynamic time warping, PCA regression, fault detection

中图分类号: 

  • TP273
[1] BENELGHALI S, BENBOUZID M E H, CHARPENTIER J F. Generator systems for marine current turbine applications: a comparative study[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3):554-563.
[2] ZHANG M, WANG T, TANG T, et al. An imbalance fault detection method based on data normalization and EMD for marine current turbines[J]. Isa Transactions, 2017, 68:302-312.
[3] 温广瑞, 江铖, 李杨,等. 基于弗德卡曼阶比跟踪的转子起停车故障特征提取方法及应用[J]. 振动与冲击, 2016, 35(2):64-68. WEN Guangrui, JIANG Cheng, LI Yang, et al. Fault feature extraction from the vibration signals in rotor start-up or slowdown processes based on order tracking and holospectrum[J]. Journal of Vibration and Shock, 2016, 35(2):64-68.
[4] WANG J, GAO R X, YAN R. Multi-scale enveloping order spectrogram for rotating machine health diagnosis[J]. Mechanical Systems and Signal Processing, 2014, 46(1):28-44.
[5] ZIMROZ R, BARTELMUS W, BARSZCZ T, et al. Diagnostics of bearings in presence of strong operating conditions non-stationarity: a procedure of load-dependent features processing with application to wind turbine bearings[J]. Mechanical Systems and Signal Processing, 2014, 46(1):16-27.
[6] ZHAO F, TIAN Z, BECBHHOEFER E, et al. An integrated prognostics method under time-varying operating conditions[J]. IEEE Transactions on Reliability, 2015, 64(2):1-14.
[7] GONG X, QIAO W. Current-based mechanical fault detection for direct-drive wind turbines via synchronous sampling and impulse detection[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1693-1702.
[8] ZHANG M, WANG T, TANG T, et al. Imbalance fault detection of marine current turbine under condition of wave and turbulence[C] //Conference of the IEEE Industrial Electronics Society, 2016. Florence, Italy: IEEE, 2016:6353-6358.
[9] 王天真, 吴昊, 刘萍,等. 基于动态限的周期非稳定工况的实时故障检测模型[J]. 电工技术学报, 2014, 29(12):95-101. WANG Tianzhen, WU Hao, LIU Ping, et al. Real-time fault detection model based on dynamic limit under periodic non-steady condition[J]. Transactions of China Electro technical Society, 2014, 29(12):95-101.
[10] YU J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis[J]. Journal of Process Control, 2012, 22(4):778-788.
[11] MA Y, SHI H, MA H, et al. Dynamic process monitoring using adaptive local outlier factor[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 127(18):89-101.
[12] 王天真, 高迪驹, 刘萍,等. 基于动态限的非周期非稳定工况故障检测模型[J]. 上海交通大学学报, 2012, 46(4):607-612. WANG Tianzhen, GAO Diju, LIU Ping, et al. A fault detection model based on dynamic limit under non-periodic non-steady conditions[J]. Journal of Shanghai Jiaotong University, 2012, 46(4):607-612.
[13] WANG T, WU H, NI M, et al. An adaptive confidence limit for periodic non-steady conditions fault detection[J]. Mechanical Systems and Signal Processing, 2015, 72-73:328-345.
[14] WANG G, LIU J, ZHANG Y, et al. A novel multi-mode data processing method and its application in industrial process monitoring[J]. Journal of Chemometrics, 2014, 29(2):126-138.
[15] QIN S J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics, 2003, 17(8-9):480-502.
[16] WANG T, XU H, HAN J, et al. Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach[J]. IEEE Transactions on Power Electronics, 2015, 30(12):7006-7018.
[17] LICHTENAUER J F, HENDRIKS E A, REINDERS M J T. Sign language recognition by combining statistical DTW and independent classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11):2040-2046.
[18] 齐咏生, 王普, 高学金,等. 基于多阶段动态PCA的发酵过程故障监测[J]. 北京工业大学学报, 2012,38(10):1474-1481. QI Yongsheng, WANG Pu, GAO Xuejin, et al. Fault detection for fermentation process based on multiphase dynamic PCA[J]. Journal of Beijing University of Technology, 2012, 38(10):1474-1481.
[19] 于静, 田国会, 尹建芹. 基于深度信息的动态手势识别算法[J]. 山东大学学报(工学版), 2014, 44(3):52-56. YU Jing, TIAN Guohui, YIN Jianqin. Dynamic hand gesture recognition algorithm based on depth information[J]. Journal of Shandong University(Engineering Science), 2014, 44(3):52-56.
[20] LUST E, FLACK K, LUZNIK L. The influence of depth and surface waves on marine current turbine performance[J]. International Journal of Marine Energy, 2013(3):27-40.
[1] 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43.
[2] 杨瑞. 基于稀疏表示的间歇故障检测方法及仿真[J]. 山东大学学报(工学版), 2017, 47(5): 51-56.
[3] 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135.
[4] 陈志文, 彭涛, 阳春华, 何章鸣,杨超, 杨笑悦. 基于改进的典型相关分析的故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 44-50.
[5] 陈杰,钟麦英,张利刚. 基于L2范数最小估计的无人机飞控系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 89-95.
[6] 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156.
[7] 季涛,孙同景,徐丙垠,孙波 . 直流系统接地故障综合检测方法[J]. 山东大学学报(工学版), 2006, 36(1): 55-59 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!