您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 96-102.doi: 10.6040/j.issn.1672-3961.0.2017.169

• • 上一篇    下一篇

基于中间变量观测器的多智能体故障检测

武炎明1,王瑞云2,王占山1*   

  1. 1. 东北大学信息科学与工程学院, 辽宁 沈阳 110819;2. 中铁第五勘察设计院集团有限公司, 北京 102600
  • 收稿日期:2017-04-18 出版日期:2017-10-20 发布日期:2017-04-18
  • 通讯作者: 王占山(1971— ),男,辽宁抚顺人,教授,主要研究方向为故障诊断. E-mail:zhanshan-wang@163.com E-mail:yanmingwu@yeah.net
  • 作者简介:武炎明(1988— ),男,安徽宿州人,博士研究生,主要研究方向为多智能体故障诊断. E-mail:yanmingwu@yeah.net
  • 基金资助:
    国家自然科学基金资助项目(61473070,61433004,61627809);SAPI基础研究基金资助项目(2013ZCX01)

Fault detection for multi-agent systems based on intermediate observer

WU Yanming1, WANG Ruiyun2, WANG Zhanshan1*   

  1. 1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China;
    2. China Railway Fifth Survey and Design Institute Group Co., LTD., Beijing 102600, China
  • Received:2017-04-18 Online:2017-10-20 Published:2017-04-18

摘要: 针对无向拓扑结构下线性多智能体系统,研究执行器故障的检测问题。 通过设计一系列维数扩展的虚拟系统,给出一种基于中间变量观测器的执行器故障诊断方法,克服了现有观测器所需的匹配条件,利用合适的中间变量矩阵,可同时估计系统的状态信息和故障信息。 通过智能体状态之间的残差信息,不仅可以检测智能体发生故障,还可以检测相邻智能体故障信息。 基于Lyapunov 稳定性理论,证明了系统估计误差最终有界。仿真结果验证了所提出设计方法的有效性。

关键词: 多智能体系统, 故障估计, 中间变量矩阵, 线性矩阵不等式, 中间变量观测器

Abstract: The actuator fault detection was studied with fault detection for a class of linear multi-agent systems under indirect communication network topology. A set of virtual systems were designed, and an actuator fault detection algorithm was proposed based on intermediate observer, which overcame the restriction of observer matching condition. The intermediate variable matrix was used appropriately to simultaneously estimate the states and faults. The states residual signal between adjacent agents was used to detect not only its own faults but also the faults of its nearest neighbors. Based on the Lyapunov stability theory, it was proved that the estimation errors were uniformly ultimately bounded. Simulation results showed the effectiveness of the designed method.

Key words: intermediate variable matrix, linear matrix inequality, multi-agent systems, intermediate observer, fault estimation

中图分类号: 

  • TP206
[1] LIANG Hongjing, ZHANG Huaguang, WANG Zhanshan. Output regulation of state-coupled linear multi-agent systems with globally reachable topologies[J]. Neurcomputing, 2014, 123:337-343.
[2] ZHANG Ke, LIU Guosheng, JIANG Bin. Robust unknown input observer-based fault estimation of leader-follower linear multi-agent systems [J]. Circuit System Signal Process, 2017, 36(2):525-542.
[3] 王巍,王丹,彭周华. 不确定非线性多智能体系统的分布式容错协同控制[J]. 控制与决策, 2015,30(7):1303-1308. WANG Wei, WANG Dan, PENG Zhouhua. Fault tolerant control for synchronization of uncertain nonlinear multi-agent systems[J]. Control and Decision, 2015, 30(7):1303-1308.
[4] MESKIN N, KHORASANI K. Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels[J]. Automatica, 2009, 45(9):2032-2040.
[5] MESKIN N, KHORASANI K. Actuator fault detection and isolation for a network of unmanned vehicles[J]. IEEE Transactions on Automatic Control, 2009, 54(4):835-840.
[6] TEIXEIRA A, SHAMES I, SANDBERG H, et al. Distributed fault detection and isolation resilient to network model uncertainties[J]. IEEE Transactions on Cybernetics, 2014, 44(11):2024-2037.
[7] ZHANG Xiaodong, ZHANG Qi. Distributed fault diagnosis in a class of interconnected nonlinear uncertain systems[J]. International Journal of Control, 2012, 85(11):1644-1662.
[8] MESKIN N, KHORASANI K, RABBATH C. Hybrid fault detection and isolation strategy for non-linear systems in the presence of large environmental disturbances[J]. IET Control Theory & Applications, 2010, 4(12):2879-2895.
[9] 陈刚,林青. 基于观测器的多智能体系统一致性控制与故障检测[J]. 控制理论与应用, 2014,31(2):584-590. CHEN Gang, LIN Qing. Observer based consensus control and fault detection for multi-agent[J]. Control Theory &Applications, 2014, 31(2):584-590.
[10] CHEN Weitian, SAIF M. Unknown input observer design for a class of nonlinear: an LMI approach[C] //Proceedings of the 2006 American Control Conference. Minneapolis: IEEE, 2006:834-838.
[11] LIU Xiuhua, GAO Xianwen, HAN Jian. Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances[J]. ISA Transactions, 2016, 61:15-28.
[12] KALSI K, LIAN Jianming, HUI S, et al. Sliding-mode observers for systems with unknown inputs: A high-gain approach [J]. Automatica, 2010, 46(2): 347-353.
[13] MENON P, EDWARDS C. Robust fault estimation using relative information in linear multi-agent networks[J]. Transactions on Automatic Control, 2014, 59(2): 477-482.
[14] ZHANG Ke, JIANG Bin, COCQUEMPOT V. Adaptive technique-based distributed fault estimation observer design for multi-agent systems with directed graphs[J]. IET Control Theory & Applications, 2015, 9(18):2619-2625.
[15] ZHANG Ke, JIANG Bin, SHI Peng. Adjustable parameter based distributed fault estimation observer design for multiagent systems with directed graphs[J]. IEEE Transactions on Cybernetics, 2017, 47(2):306-314.
[16] GARCIA G, BERNUSSOU J. Pole assignment for uncertain systems in a specified disk by state feedback[J]. Transactions on Automatic Control, 1995, 40(1):184-190.
[17] CHENG C, LIU I. Design of MIMO integeral variable structure controllers[J]. Journal of the Franklin Institute, 1999, 336(7):1119-1134.
[18] ZHANG Ke, JIANG Bin, COCQUEMPOT V. Adaptive observer based fast fault estimation[J]. International Journal of Control Automation and Systems, 2008, 6(3):320-326.
[19] GAO Zhiwei, LIU Xiaoxu, CHEN M Z Q. Unknown input observer based roubust fault estimation for systems corrupted by paritially decoupled disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4):2537-2547.
[20] DAS R, SEN S, DASGUPTA S. Robust and fault tolerant controller for attitude control of a satellite launch vehicle[J]. IET Control Theory and Applications, 2007, 1(1):304-312.
[21] ZHU Junwei, YANG Guanghong, WANG Hong, et al. Fault estimation for a class of nonlinear systems based on intermediate estimator[J]. Transactions on Automatic Control, 2016, 61(9):2518-2523.
[1] 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135.
[2] 黄洁,何潇. 基于两阶段TKF的测量死区下离散时间系统的故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 136-142.
[3] 赵晔,何潇,周东华. 带有不准确测量噪声的最小二乘故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 254-262.
[4] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[5] 周绍伟. 随机Markov跳跃系统有限时间稳定性[J]. 山东大学学报(工学版), 2016, 46(2): 78-84.
[6] 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28.
[7] 周丽娜1,刘晓华2. 不确定中立型随机时滞系统的鲁棒记忆非脆弱H∞控制[J]. 山东大学学报(工学版), 2013, 43(3): 49-56.
[8] 何荣福1,肖民卿2*. 圆形区域极点约束下的δ算子时滞系统鲁棒L2-L∞控制[J]. 山东大学学报(工学版), 2013, 43(1): 69-79.
[9] 袁帅1, 刘新芝1, 2*. 切换系统故障估计方法在三水箱系统中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 52-58.
[10] 王云,王俊,韩伟*. 基于进化算法的多智能体合作学习[J]. 山东大学学报(工学版), 2010, 40(6): 8-11.
[11] 刘国彩,刘玉常,鞠培军. 变时滞神经网络的时滞相关全局渐近稳定新判据[J]. 山东大学学报(工学版), 2010, 40(4): 53-56.
[12] 焦建民1 ,孙小军1 ,吴保卫2 . 带有非线性扰动的不确定奇异时滞系统的保性能控制[J]. 山东大学学报(工学版), 2009, 39(2): 64-69.
[13] 冯刚, M. Chen. 基于双线性矩阵不等式的H∞无穷离散时间模糊控制器设计(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 37-51.
[14] 刘佃瑞,赵辉宏,钟麦英 . 一类线性离散时变系统的H∞故障估计[J]. 山东大学学报(工学版), 2008, 38(4): 11-16 .
[15] 王岩青,钱承山,姜长生 . 中立型不确定变时滞系统的一个时滞相关鲁棒稳定性判据[J]. 山东大学学报(工学版), 2008, 38(1): 116-120 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!