山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 130-135.doi: 10.6040/j.issn.1672-3961.0.2017.252
李洪阳,何潇*
LI Hongyang, HE Xiao*
摘要: 基于平方根容积卡尔曼滤波方法(Square root cubature Kalman filter, SCKF),研究一类非线性随机动态系统的故障检测与估计问题。SCKF对解决复杂非线性系统的状态估计问题,具有精度高、稳定性优和计算复杂度低等优点。针对发生执行器故障的非线性随机动态系统,采用SCKF估计系统状态,并根据状态估计结果,利用滑动时间窗口技术设计残差信号,检测故障发生。在检测到故障之后,构造增广系统,实现对执行器故障幅值的估计。通过仿真试验验证了所提出方法的有效性。
中图分类号:
[1] 周东华, 叶银忠. 现代故障诊断与容错控制[M]. 北京:清华大学出版社, 2000. [2] 周东华, 胡艳艳. 动态系统的故障诊断技术[J]. 自动化学报, 2009, 35(6): 748-758. ZHOU Donghua, HU Yanyan. Fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2009, 35(6):748-758. [3] DING S X. Model-based fault diagnosis techniques[M]. Berlin: Springer Berlin Heidelberg, 2008. [4] FRANK P M. Fault diagnosis in dynamic system using analytical and knowledgebased redundancy: a survey and some new result[J]. Automatica, 1990, 18(2): 18-22. [5] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. [6] HE X, WANG Z D, ZHOU D H. Robust H-infinity filtering for time-delay systems with probabilistic sensor faults[J]. IEEE Signal Processing Letters, 2009, 16(5): 442-445. [7] LIU Y, HE X, WANG Z D, et al. Optimal filtering for networked systems with stochastic sensor gain degradation[J]. Automatica, 2014, 50(5): 1521-1525. [8] HE X, WANG Z D, WANG X F, et al. Networked strong tracking filtering with multiple packet dropouts: algorithms and applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1454-1463. [9] ANTONIOU C, BEN-AKIVA M, KOUTSOPOULOS H N. Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(4): 661-670. [10] KIM B, YI K, YOO H J, et al. An IMM/EKF approach for enhanced multitarget state estimation for application to integrated risk management system[J]. Vehicular Technology IEEE Transactions on, 2015, 64(3): 876-889. [11] KATRINIOK A, ABEL D. Adaptive EKF-based vehicle state estimation with online assessment of local observability[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1368-1381. [12] ROMANENKO A, CASTRO J A A M. The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study[J]. Computers & Chemical Engineering, 2004, 28(3): 347-355. [13] LO K L, RATHAMARIT Y. State estimation of a boiler model using the unscented Kalman filter[J]. IET Generation, Transmission & Distribution, 2008, 2(6): 917-931. [14] JIA B, XIN M, CHENG Y. High-degree cubature Kalman filter[J]. Automatica, 2013, 2(49): 510-518. [15] JIA B, XIN M. Adaptive cubature Kalman filter with directional uncertainties[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(3): 1477-1486. [16] CUI B, CHEN X, TANG X. Improved cubature Kalman filter for GNSS/INS based on transformation of posterior Sigma-points error[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2975-2987. [17] ROY A, MITRA D. Multi-target trackers using cubature Kalman filter for Doppler radar tracking in clutter[J]. Iet Signal Processing, 2016, 10(8): 888-901. [18] 崔乃刚, 张龙, 王小刚,等. 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015, 36(12): 3885-3895. CUI Naigang, ZHANG Long, WANG Xiaogang, et al. The application of adaptive high-degree cubature Kalman filter in target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3885-3895 [19] 张秋昭, 张书毕,刘志平,等. 基于奇异值分解的鲁棒容积卡尔曼滤波及其在组合导航中的应用[J]. 控制与决策, 2014(2): 341-346. ZHANG Qiuzhao, ZHANG Shubi, LIU Zhiping, et al. Robust cubature Kalman filter based on SVD and its application to integrated navigation[J]. Control and Decision, 2014(2): 341-346. [20] CUI B, CHEN X, XU Y, et al. Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS[J]. Isa Transactions, 2017: 460-468. |
[1] | 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43. |
[2] | 杨瑞. 基于稀疏表示的间歇故障检测方法及仿真[J]. 山东大学学报(工学版), 2017, 47(5): 51-56. |
[3] | 黄洁,何潇. 基于两阶段TKF的测量死区下离散时间系统的故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 136-142. |
[4] | 陈志文, 彭涛, 阳春华, 何章鸣,杨超, 杨笑悦. 基于改进的典型相关分析的故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 44-50. |
[5] | 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129. |
[6] | 武炎明,王瑞云,王占山. 基于中间变量观测器的多智能体故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 96-102. |
[7] | 陈杰,钟麦英,张利刚. 基于L2范数最小估计的无人机飞控系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 89-95. |
[8] | 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156. |
[9] | 赵晔,何潇,周东华. 带有不准确测量噪声的最小二乘故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 254-262. |
[10] | 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270. |
[11] | 袁帅1, 刘新芝1, 2*. 切换系统故障估计方法在三水箱系统中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 52-58. |
[12] | 刘佃瑞,赵辉宏,钟麦英 . 一类线性离散时变系统的H∞故障估计[J]. 山东大学学报(工学版), 2008, 38(4): 11-16 . |
[13] | 刘帅,钟麦英 . 线性离散时变系统的H∞故障估计[J]. 山东大学学报(工学版), 2007, 37(3): 36-40 . |
[14] | 季涛,孙同景,徐丙垠,孙波 . 直流系统接地故障综合检测方法[J]. 山东大学学报(工学版), 2006, 36(1): 55-59 . |
|