您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 35-42.doi: 10.6040/j.issn.1672-3961.0.2014.376

• 控制科学与工程 • 上一篇    下一篇

基于改进EMD算法的信号滤波

穆峰, 常发亮, 蒋沁宇   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2014-12-22 修回日期:2015-04-27 发布日期:2014-12-22
  • 通讯作者: 常发亮(1965- ),男,山东潍坊人,教授,博导,主要研究方向为机器视觉和模式识别.E-mail:flchang@sdu.edu.cn E-mail:flchang@sdu.edu.cn
  • 作者简介:穆峰(1990- ),男,辽宁抚顺人,硕士研究生,主要研究方向为故障诊断和声音识别. E-mail:723945081@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61273277)

Signal filtering based on Improved Empirical Mode Decomposition

MU Feng, CHANG Faliang, JIANG Qinyu   

  1. College of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-12-22 Revised:2015-04-27 Published:2014-12-22

摘要: 为解决经典经验模态分解(empirical mode decomposition, EMD)滤波算法在低信噪比环境下滤波效果不佳的问题,提出了一种改进的EMD滤波算法。利用FFT对信号进行简单的频谱分析,若其中含有高频噪声,则对信号经EMD分解后得到的一阶本征模态函数 (intrinsic mode function, IMF)分量做剔除处理;若信号中含有白噪声及毛刺干扰,则向经典EMD滤波算法中添加变尺度因子,然后对信号进行EMD滤波,在算法最后一次迭代时再将一阶IMF剔除。仿真试验结果表明,改进的EMD滤波算法在低信噪比环境下有较小的均方误差值,滤波效果较好。

关键词: 经验模态分解, 去噪, 低信噪比, 变尺度, 本征模函数

Abstract: To solve the problem that the filtering effect of classical Empirical Mode Decomposition (EMD) algorithm wasn't good in a low SNR environment, an improved EMD filtering algorithm was proposed. Signal spectrum was analyzed with FFT, if there was high-frequency noise in the signal, the first Intrinsic Mode Function (IMF) which was obtained by EMD algorithm was removed. And if there was white-noise or glitch in the signal, a variable factor was added to the classical EMD algorithm then filtered the signal using EMD, and the first IMF was removed at the last iteration of the algorithm. The simulation experimental results showed that the Mean Square Error (MSE) of the improved EMD algorithm was small and the filtering effect was good in the low SNR environment.

Key words: denoising, intrinsic mode function, variable metric, low SNR, empirical mode decomposition

中图分类号: 

  • TP391.4
[1] KABIR M A, SHAHNAZ C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains[J]. Biomedical Signal Processing and Control, 2012, 7(5):481-489.
[2] 聂文仲,黄华,陶治江. 基于经验模态分解的间接心电去噪[J]. 四川大学学报:自然科学版,2011,48(6):1329-1333. NIE Wenzhong, HUANG Hua, TAO Zhijiang. Mode-based ECG indirect denoising using empirical mode decomposition[J]. Journal of Sichuan University:Natural Science Edition, 2011, 48(6):1329-1333.
[3] 王玉静,宋立新. 基于EMD和Hilbert变换的心电信号去噪方法[J]. 哈尔滨理工大学学报,2007,12(4):70-73. WANG Yujing, SONG Lixin. Denoising of ECG signal based on empirical mode decomposition and Hilbert transform[J]. Journal of Harbin University of Science and Technology, 2007, 12(4):70-73.
[4] BIN G, GAO J, LI X, et al. Early fault diagnosis of rotating machinery based on wavelet packets-Empirical mode decomposition feature extraction and neural network[J]. Mechanical Systems and Signal Processing, 2012(27):696-711.
[5] YAN Z, WANG Z, REN X. Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification[J]. Journal of Zhejiang University SCIENCE A, 2007, 8(8):1246-1255.
[6] LI S, ZHOU W, YUAN Q, et al. Feature extraction and recognition of ictal EEG using EMD and SVM[J]. Computers in Biology and Medicine, 2013, 43(7):807-816.
[7] NUNES J C, BOUAOUNE Y, DELECHELLE E, et al. Image analysis by bidimensional empirical mode decomposition[J]. Image and Vision Computing, 2003, 21(12):1019-1026.
[8] LOONEY D, MANDIC D P. Multiscale image fusion using complex extensions of EMD[J]. IEEE Transactions on Signal Processing, 2009, 57(4):1626-1630.
[9] CHEN S, ZHANG R, SU H, et al. SAR and multispectral image fusion using generalized IHS transform based on a trous wavelet and EMD decompositions[J]. IEEE Transactions on Sensors Journal, 2010, 10(3):737-745.
[10] LI Y, PETER W T, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine[J]. Mechanical Systems and Signal Processing, 2010, 24(1):193-210.
[11] SHEN Z, CHEN X, ZHANG X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM[J]. Measurement, 2012, 45(1):30-40.
[12] 程军圣,马兴伟,杨宇. 基于VPMCD和EMD的齿轮故障诊断方法[J]. 振动与冲击,2013,32(20):9-13. CHENG Junsheng, MA Xingwei, YANG Yu. Gear fault diagnosis method based on VPMCD and EMD[J]. Journal of Vibration and Shock, 2013, 32(20):9-13.
[13] 臧怀刚,李清志. 改进的EMD方法在局部放电信号提取中的应用[J]. 电力系统及其自动化学报,2014,26(11):78-81. ZANG Huaigang, LI Qingzhi. Application of Improved Emd Method on Extraction of Partial Discharge Signal[J]. Proceedings of the CSU-EPSA, 2014, 26(11):78-81.
[14] 许同乐,郎学政,张新义,等. 基于EMD相关方法的电动机信号降噪的研究[J]. 船舶力学,2014,18(5):599-603. XU Tongle, LANG Xuezheng, ZHANG Xinyi, et al. Study on the electric motor vibration signal de-noising using EMD correlation de-noising algorithm[J]. Journal of Ship Mechanics, 2014, 18(5):599-603.
[15] 王学敏,黄方林. EMD端点效应抑制的一种实用方法[J]. 振动、测试与诊断,2012,32(3):493-497. WANG Xuemin, HUANG Fanglin. Method for restraining endpoints effect of EMD[J]. Journal of Vibration Measurement & Diagnosis, 2012, 32(3):493-497.
[16] 王婷. EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,2010. WANG Ting. Research on EMD algorithm and its Application in signal denoising[D]. Harbin:Harbin Engineering University, 2010.
[17] BOUDRAA A O, CEXUS J C. EMD-based signal filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6):2196-2202.
[18] 李敏通. 柴油机振动信号特征提取与故障诊断方法研究[D].杨凌:西北农林科技大学,2012. LI Mintong. Research on diesel engine vibration signal feature extraction and fault diagnosis methods[D]. Yangling:Northwest A&F University, 2012.
[19] STANWELL P, SIDDALL P, KESHAVA N, et al. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain[J]. Neuroimage, 2010, 53(2):544-552.
[20] YANG Z, YANG L. A new bidimensional Empirical Mode Decomposition by using radon transform[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2011, 9(3):387-396.
[21] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):917-923.
[1] 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15.
[2] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
[3] 王丽,周以齐,于刚,米永振. 基于EEMD和ICA方法的驾驶室内噪声源时频分析[J]. 山东大学学报(工学版), 2014, 44(2): 80-88.
[4] 王艳超,杨立才*,刘澄玉. 基于模板匹配和镜像延拓的两阶段经验模态分解算法[J]. 山东大学学报(工学版), 2012, 42(6): 69-73.
[5] 曲怀敬1,孙丰荣2,张运楚1,姚桂华3,吴延荣1,杨明强2. 一种IVUS序列图像内外膜边缘的自动提取方法[J]. 山东大学学报(工学版), 2011, 41(2): 5-11.
[6] 刘成云 陈振学 常发亮. 基于平稳小波的自适应阈值MR图像去噪法[J]. 山东大学学报(工学版), 2009, 39(5): 58-61.
[7] 孙伟峰,彭玉华,许建华 . 基于EMD的激光超声信号去噪方法[J]. 山东大学学报(工学版), 2008, 38(5): 121-126 .
[8] 牛新生,叶华,王亮 . 一种基于双Haar小波的图像去噪算法[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 .
[9] 贺长伟,王欣 . 一种基于双Haar小波的图像去噪算法[J]. 山东大学学报(工学版), 2007, 37(4): 77-80 .
[10] 孙君,袁东风, . 小波去噪结合信道估计在OFDM系统中的应用[J]. 山东大学学报(工学版), 2006, 36(2): 104-106 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!