-
一种融合社交网络的叠加联合聚类推荐模型
- 读习习,刘华锋,景丽萍
-
2018, 48(3):
96-102.
doi:10.6040/j.issn.1672-3961.0.2017.404
-
摘要
(
1380 )
PDF (1010KB)
(
485
)
收藏
-
参考文献 |
相关文章 |
多维度评价
为解决用户冷启动问题并提高推荐算法的评分预测精度,提出一种融合社交网络的叠加联合聚类推荐模型(SN-ACCRec),将用户社交关系融合到对评分矩阵的用户聚类中。根据社交关系理论分析用户社交关系,采用模糊C均值聚类的思想划分用户块,并利用k均值算法对评分矩阵的产品聚类,得到一次联合聚类结果。通过迭代方式获取用户和产品多层联合聚类结果,不断叠加多层聚类结果来近似评分矩阵,预期先后得到用户和产品的泛化和细化类别,实现对评分矩阵中缺失值的预测。采用十重交叉验证法对模型评估,试验结果表明,该模型有效降低了推荐中的平均绝对误差(mean absolute error, MAE)和均方根误差(root mean square error, RMSE),同时在冷启动用户上也表现出了较好地推荐性能。