您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (4): 144-148.

• 其它 • 上一篇    下一篇

基于对偶树复小波-Contourlet变换的自适应多传感图像融合算法

赵文忠   

  1. 河西学院机电工程系, 甘肃 张掖 734000
  • 收稿日期:2009-09-14 出版日期:2010-08-16 发布日期:2009-09-14
  • 作者简介:赵文忠(1966-), 山东潍坊人,副教授,主要研究方向为电力系统与传感检测.E-mail: zhaowz38@163.com

Self-adaptive multisensor image fusion algorithm based on dual-tree complex wavelet-Contourlet transform

ZHAO Wen-zhong   

  1. Department of Mechanic and Electronic Engineering, Hexi University, Zhangye 734000, China
  • Received:2009-09-14 Online:2010-08-16 Published:2009-09-14

摘要:

为了解决小波变换所导致的方向选择性差的问题,基于对偶树复小波-Contourle变换,提出了自适应多传感图像融合新算法。该算法将全色图像和多光谱图像进行对偶树复小波-Contourle变换分解后,针对不同的频率域特点选择不同的融合规则:对低频系数选用区域能量的加权系数自适应融合规则,对高频系数特性选用区域特征自适应的融合规则。最后通过重构得到融合图像。将其他融合算法和本文所提算法进行了对比,结果表明,基于对偶树复小波-Contourle变换的算法是有效可行的。

关键词: 多传感图像, 对偶树复小波变换, Contourlet变换, 自适应, 融合算法

Abstract:

To overcome the poor directional selectivity of wavelet transform, a new self-adaptive multi-sensor image fusion algorithm was proposed based on the dual-tree complex wavelet-Contourlet transform.Using this algorithm,the panchromatic and multispectral images were first decomposed and transformed,and then different fusion rules were used according to different frequency characteristics: the self-adaptive regional energy coefficients added fusion rule were used for the lowfrequency and the regional feature self-adaptive fusion rule for the high-coefficients.The final fusion images was obtained by reconstruction.Compared with other fusion algorithms, the results showed that the self-adaptive image fusion algorithm based on the dual-tree complex wavelet-contourlet transform was feasible and effective.

Key words:  multisensor images, dual-tree complex wavelet transform, Contourlet transform, self-adpative, fusion algorithm

[1] 周前,李群,朱丹丹,李仪博. 基于M3C自适应虚拟惯量的海上低频风电系统协调惯量响应控制[J]. 山东大学学报 (工学版), 2025, 55(5): 30-39.
[2] 李晓辉,刘小飞,孙炜桐,赵毅,董媛,靳引利. 基于车辆与无人机协同的巡检任务分配与路径规划算法[J]. 山东大学学报 (工学版), 2025, 55(5): 101-109.
[3] 郑晓,陈鹤,周东傲,宫永顺. 基于视频描述增强和双流特征融合的视频异常检测方法[J]. 山东大学学报 (工学版), 2025, 55(5): 110-119.
[4] 高君健,廖祝华,刘毅志,赵肄江. 基于分层多智能体强化学习的个性化与信号控制联合路径引导方法[J]. 山东大学学报 (工学版), 2025, 55(3): 34-45.
[5] 吴正健,吾尔尼沙·买买提,杨耀威,阿力木江·艾沙,库尔班·吾布力. 基于DRCoALTP的印刷体文档图像多文种识别方法[J]. 山东大学学报 (工学版), 2025, 55(1): 51-57.
[6] 张梦雨,何振学,赵晓君,王浩然,肖利民,王翔. 基于AMSChOA的MPRM电路面积优化[J]. 山东大学学报 (工学版), 2024, 54(6): 147-155.
[7] 王辰龑,刘轩,超木日力格. 自适应的并行天牛须优化算法[J]. 山东大学学报 (工学版), 2024, 54(5): 74-80.
[8] 方世超,滕旭阳,王子南,陈晗,仇兆炀,毕美华. 基于自适应掩码和生成式修复的图像隐私保护技术[J]. 山东大学学报 (工学版), 2024, 54(5): 111-121.
[9] 刘子一,崔超然,孟凡安,林培光. 基于批归一化统计量的无源多领域自适应方法[J]. 山东大学学报 (工学版), 2023, 53(2): 102-108.
[10] 刘丁菠,刘学艳,于东然,杨博,李伟. 面向小样本目标检测任务的自适应特征重构算法[J]. 山东大学学报 (工学版), 2022, 52(6): 115-122.
[11] 武新章,梁祥宇,朱虹谕,张冬冬. 基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测[J]. 山东大学学报 (工学版), 2022, 52(6): 146-156.
[12] 许传臻,袭肖明,李维翠,孙仪,杨璐. 基于自适应多分辨率特征学习的CNV分型网络[J]. 山东大学学报 (工学版), 2022, 52(4): 69-75.
[13] 孟祥飞,张强,胡宴才,张燕,杨仁明. 欠驱动船舶自适应神经网络有限时间跟踪控制[J]. 山东大学学报 (工学版), 2022, 52(4): 214-226.
[14] 程业超,刘惊雷. 自适应图正则的单步子空间聚类[J]. 山东大学学报 (工学版), 2022, 52(2): 57-66.
[15] 闵海根,方煜坤,吴霞,王武祺. 网联交通环境下的车-车通信故障诊断方法[J]. 山东大学学报 (工学版), 2021, 51(6): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[4] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[5] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[6] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[7] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[8] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[9] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[10] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .