您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (3): 52-60.doi: 10.6040/j.issn.1672-3961.0.2020.468

• • 上一篇    下一篇

硬岩隧道施工通风系统优化与抑尘效果评价

王春国   

  1. 中铁十四局集团隧道工程有限公司, 山东 济南 250003
  • 出版日期:2021-06-20 发布日期:2021-06-24
  • 作者简介:王春国(1971— ),男,山东青岛人,高级工程师,主要研究方向为隧道工程. E-mail:wztgzy@yeah.net
  • 基金资助:
    山东省重点研发计划资助项目(2018GHY115015)

Optimization of ventilation system of TBM tunnel construction and evaluation of dust suppression effect

WANG Chunguo   

  1. Tunnel Engineering Co., Ltd., China Railway 14 Bureau Group, Jinan 250003, Shandong, China
  • Online:2021-06-20 Published:2021-06-24

摘要: 硬岩隧道掘进机(tunnel boring machine, TBM)在施工过程中会产生大量粉尘,粉尘是影响操作环境与工人身体健康的重要因素。为了进一步优化施工通风除尘效果,结合青岛地铁1号线双护盾TBM实际工况,使用Ansys-Fluent软件对隧道开挖过程进行数值分析。检测隧道各位置风速及粉尘质量浓度并与数值模拟结果进行对比,进而验证模型的有效性。针对TBM隧道施工过程中是否必要开启除尘系统,以及除尘风口位置和最优吸风流量选择等问题,开展数值模拟计算。研究结果表明:当关闭除尘系统或开启除尘系统但吸风流量在4 m3/s以下时,粉尘扩散到TBM掘进区大部分区域;在除尘风管距离掌子面15 m,吸风流量为12 m3/s时,除尘效果达到最佳,粉尘扩散全面距离降低至45 m,可以有效除尘。本研究结果可以为隧道通风除尘设计与施工提供科学依据。

关键词: 隧道掘进机, 通风系统, 抑尘效果, 数值模拟, 粉尘扩散

Abstract: Hard rock tunneling boring machine(TBM)produces a large amount of dust during construction, which is an important factor affecting the operating environment and the health of workers. To further optimize the construction ventilation and dust removal effect, combined with the actual working conditions of Qingdao Metro Line 1 double shield TBM, Ansys-Fluent software was used to carry out numerical analysis of the tunnel excavation process. The wind speed and dust mass concentration at each location of the tunnel were detected and compared with the numerical simulation results to verify the effectiveness of the model. In view of whether it is necessary to open the dust removal system in the process of TBM tunnel construction, as well as the location of dust removal tuyere and the selection of optimal suction flow, numerical simulation was carried out. When the dust removal system was turned off or the dust removal system was turned on but the suction flow was below 4 m3/s, and the dust diffuses to most areas of the TBM tunneling area. When the dust duct was 15 m away from the hand surface and the suction airflow was 12 m3/s, the dust removal effect reached the best, and the dust diffusion distance was reduced to 45 m, which could effectively remove dust. The research results could provide a scientific basis for the design and construction of tunnel ventilation and dust removal.

Key words: tunnel boring machine, ventilation system, dust suppression effect, numerical simulation, dust diffusion

中图分类号: 

  • U455
[1] ZHOU Wendong, WANG Hetang, WANG Deming, et al. The effect of geometries and cutting parameters of conical pick on the characteristics of dust generation: experimental investigation and theoretical exploration[J]. Fuel Processing Technology, 2020, 198: 106243.
[2] QIANG Liu, WEN Nie, YUN Hua, et al. Long-duct forced and short-duct exhaust ventilation system in tunnels: formation and dust control analysis of pressure ventilation air curtain[J]. Process Safety and Environmental Protection, 2019, 132:367-377.
[3] 徐海.敞开式TBM施工隧道粉尘扩散及除尘系统研究[J].中国安全生产科学技术,2019,15(6):179-185. XU Hai. Study on dust diffusion and dust removal system of open-type TBM construction tunnel[J]. Journal of Safety Science and Technology, 2019, 15(6):179-185.
[4] LU Hao, LU Lin, JIANG Yu. Numerical simulation of particle deposition in duct air flows with uniform, expanding or contracting cross-section[J]. Energy and Buildings, 2016, 128:867-875.
[5] YIN Shuai, NIE Wen, LIU Qiang, et al. Transient CFD modelling of space-time evolution of dust pollutants and air-curtain generator position during tunneling[J]. Journal of Cleaner Production, 2019, 239:117924.1-117924.19.
[6] LI Pengcheng, ZHI Zhou, CHEN Lianjun, et al. Research on dust suppression technology of shotcrete based on new spray equipment and process optimization[J]. Advances in Civil Engineering, 2019, 3:1-11.
[7] 郭春,宋骏修,王欣,等.矿山法施工隧道粉尘控制技术研究现状及进展[J].隧道建设,2020,40(增刊1):68-74. GUO Chun, SONG Junxiu, WANG Xin, et al. Research status and development of dust control technology in tunnel constructed by mining method[J]. Tunnel Construction, 2020, 40(Suppl.1):68-74.
[8] SUN Zhanpeng, LIANG Longlong, LIU Qinggang, et al. Effect of the particle injection position on the performance of a cyclonic gas solids classifier[J]. Advanced Powder Technology, 2019, 31(1):227-233.
[9] WANG Qingguo, WANG Deming, HAN Fangwei, et al. Study and application on foam-water mist integrated dust control technology in fully mechanized excavation face[J]. Process Safety and Environmental Protection, 2020, 133:41-50.
[10] 黄显周,陈实,魏治国,等.澜沧江特长隧道混合式施工通风技术研究[J].地下空间与工程学报,2020,16(增刊1):353-359. HUANG Xianzhou, CHEN Shi, WEI Zhiguo, et al. Mixed construction ventilation of lancang river super long tunnel[J].Chinese Journal of Underground Space and Engineering, 2020, 16(Suppl.1):353-359.
[11] WANG Yingchao, LUO Gang, GENG Fan, et al. Numerical study on dust movement and dust distribution for hybrid ventilation system in a laneway of coal mine[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:146-157.
[12] WANG Hao, NIE Wen, CHENG Weimin, et al. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel's fully-mechanized working face[J]. Advanced Powder Technology, 2018, 29(2):230-244.
[13] 胡宜.通风系统布置对TBM掘进区域温度与粉尘分布影响规律研究[D].长沙:中南大学,2014. HU Yi. Research ininfluence rules of ventilation system distribution to TBM tunneling areas dust and temperature distribution [D].Changsha: Central South University, 2014.
[14] PARRA M T, VILLAFRUELA J M, CASTRO F, et al. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building and Environment, 2006, 41:87-93.
[15] 赵宁雨,吕陈伏,陈弘杨,等.高海拔长大隧道压入式施工通风的合理长度研究[J].重庆交通大学学报(自然科学版),2020,39(3):94-99. ZHAONingyu, LYU Chenfu, CHEN Hongyang, et al. Optimal length of forced ventilation in construction of long tunnel at high altitude[J].Journal of Chongqing Jiaotong University(Natural Science), 2020, 39(3):94-99.
[16] 宋骏修,宋斌,董长松,等.风管布设参数对隧道施工排尘效果的影响研究[J].现代隧道技术,2019, 56(增刊2): 143-149. SONGJunxiu, SONG Bin, DONG Changsong, et al. The influence of duct layout parameters n the dust removal effect if tunnel ventilation system[J]. Modern Tunnelling Technology, 2019, 56(Suppl.2):143-149.
[17] 梁敏阳.哈尔乌素露天煤矿冬季粉尘运移规律及数值模拟[D].徐州:中国矿业大学,2019. LIANGMinyang. Dust migration law and numerical simulation in winter in haerwusu open-pit coal mine[D]. Xuzhou: China University of Mining and Technology, 2019.
[18] SUN Biao, CHENG Weimin, WANG Jiayuan, et al. Effects of turbulent airflow from coal cutting on pollution characteristics of coal dust in fully-mechanized mining face: a case study[J].Journal of Cleaner Production, 2018, 201:308-324.
[19] 彭亚.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018,46(1):224-30. PENG Ya. Study on seam water injection and dust control optimization and effect of fully-mechanized coal mining face[J]. Coal Science and Technology, 2018, 46(1):224-30.
[20] 陈举师,蒋仲安,谭聪.岩巷综掘工作面通风除尘系统的数值模拟[J].哈尔滨工业大学学报,2015,47(2):98-103. CHEN Jushi, JIANG Zhongan, TAN Cong. Numerical simulation of dust removal and ventilation system in the rock comprehensive tunneling face[J]. Journal of Harbin Institute of Technology, 2015, 47(2):98-103.
[21] 时训先,蒋仲安,褚燕燕.煤矿综采工作面防尘技术研究现状及趋势[J].中国安全生产科学技术,2005,1(1):41-43. SHI Xunxian, JIANG Zhongan, CHU Yanyan. Current development and trend of dust control technology research of fully mechanized coal faces[J]. Journal of Safety Science and Technology, 2005, 1(1):41-43.
[22] XIA Yimin, YANG Duan, HU Chenghuan, et al. Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and Underground Space Technology, 2016, 56:70-78.
[23] LIU Qiang, NIE Wen, HUA Yun, et al. A study on the dust control effect of the dust extraction system in TBM construction tunnels based on CFD computer simulation technology[J]. Advanced Powder Technology, 2019, 30:2059-2075.
[24] XU Guang, LUXBACHER Kray D, RAGAB Saad, et al. Computational fluid dynamics applied to mining engineering: a review[J]. International Journal of Mining, Reclamation and Environment, 2016, 31(4):251-275.
[25] MORSI Sa, ALEXANDER Aj. Investigation of particle trajectories in 2-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2):193-208.
[26] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(2):269-289.
[27] HU Shengyong, LIAO Qi, FENG Guorui, et al. Influences of ventilation velocity on dust dispersion in coal roadways[J]. Powder Technology, 2020, 360:683-694.
[28] CHENG Weimin, NIE Wen, ZHOU Gang, et al. Research and practice on fluctuation water injection technology at low permeability coal seam[J]. Safety Science, 2012, 50(4):851-856.
[1] 刘启明,王文辉,潘英楠,高要辉,郑程程,贺鹏. 厚度缺陷对初支结构安全性的影响及风险评价[J]. 山东大学学报 (工学版), 2025, 55(5): 165-178.
[2] 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟[J]. 山东大学学报 (工学版), 2025, 55(1): 97-107.
[3] 陈文举, 陈俐企, 包春波, 朱启银, 惠冰, 庄培芝. 循环管道加热桥面融雪效能数值模拟[J]. 山东大学学报 (工学版), 2024, 54(6): 100-110.
[4] 马川义,冯豪杰,蒋红光,侯天新,姚占勇,杨为民. 吸水土工布对路基湿度控制效果的数值模拟[J]. 山东大学学报 (工学版), 2024, 54(4): 141-149.
[5] 韩超,王彤,陈德文,孙恩赐,李平,吴则祥,周冲,庄培芝. 基于耦合欧拉-拉格朗日方法的砂土中静压桩挤土效应数值模拟[J]. 山东大学学报 (工学版), 2024, 54(2): 143-152.
[6] 王钰鑫,吕思忠,姚望,林春金,张明,李召峰,张健,王衍升. 粉质黏土地层桩侧劈裂注浆参数设计与效果评价[J]. 山东大学学报 (工学版), 2023, 53(6): 70-81.
[7] 张亚平,马唯婧,张宸硕,肖辉,张一鸣. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报 (工学版), 2023, 53(6): 122-130.
[8] 宋洋,罗志恒,张波,张宇,朱敏. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报 (工学版), 2023, 53(5): 121-131.
[9] 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30.
[10] 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59.
[11] 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99.
[12] 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121.
[13] 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78.
[14] 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213.
[15] 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[2] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[3] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[4] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[5] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[6] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[7] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84 -86 .
[8] 夏 斌,张连俊 . DS-CDMA UWB系统中基于能量比较的TOA估计算法[J]. 山东大学学报(工学版), 2007, 37(1): 70 -73 .
[9] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[10] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .