山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 101-106.doi: 10.6040/j.issn.1672-3961.0.2018.417
Yulei ZHANG(
),Yong WANG*(
),Yudong XIE,Guang SUN,Yanyun WANG,Jiazhen HAN
摘要:
为获得新型液态金属磁流体发电机的流动规律,对空载发电通道动力学特性进行三维数值模拟研究。采用基于Fluent软件的感应磁场法和修正的K-ε湍流模型保证计算精度;对比分析近壁面和中心层的速度及电磁力分布;定义速度波动程度,选取不同物理参数,对发电有效段下游的速度剖面及其波动程度量化分析。结果表明,发电有效段下游速度波动程度最大,速度剖面及其波动程度受发电通道参数的影响明显。当通道宽度相同时,相互作用参数决定速度剖面波动程度,相互作用参数与速度波动程度成正比;随着宽度增大,相互作用参数对速度波动程度影响下降。
中图分类号:
| 1 |
赵凌志, 彭燕, 沙次文, 等. 新型液态金属磁流体发电机的等效电路模型[J]. 电力自动化设备, 2011, 31 (12): 21- 31.
doi: 10.3969/j.issn.1006-6047.2011.12.004 |
|
ZHAO Lingzhi , PENG Yan , SHA Ciwen , et al. Equivalent circuit model of liquid metal magnetohydrodynamic generator[J]. Electric Power Automation Equipment, 2011, 31 (12): 21- 31.
doi: 10.3969/j.issn.1006-6047.2011.12.004 |
|
| 2 | TIMOTHY M, RYNNE. Ocean wave energy conversion system: 5136173[P]. 1992-08-04. |
| 3 | YAMADA K , MAEDA T , HASEGAWA Y , et al. Two-dimensional numerical simulation on performance of liquid metal MHD generator[J]. Electrical Engineering in Japan, 2006, 156 (1): 25- 32. |
| 4 | YAMADA K , MAEDA T , HASEGAWA Y , et al. Three-dimensional numerical analysis of a liquid metal MHD generator[J]. Electrical Engineering in Japan, 2007, 160 (3): 141- 146. |
| 5 |
HU L C , KOBAYASHI H , OKUNO Y . Analyses on response of a liquid metal MHD power generation system to various external inputs[J]. IEEE Transactions on Electrical and Electronic Engineering, 2015, 10, 268- 273.
doi: 10.1002/tee.2015.10.issue-3 |
| 6 | ZHAO L Z, PENG Y, SHA C W, et al. Effect of liquid metal characteristics on performance of LMMHD wave energy conversion system[C]//Proceedings of the 19th International Offshore and Polar Engineering Conference. Osaka, Japan: ISOPE, 2009: 308-311. |
| 7 | LIU B L, PENG Y, ZHAO L Z, et al. Hydrodynamic modelling of heaving buoy wave energy conversion system with liquid metal magnetohydrodynamic generator[C]//Proceedings of the 21st International Offshore and Polar Engineering Conference. Hawaii, USA: ISOPE, 2011: 695-700. |
| 8 | LIU B L , LI J , PENG Y , et al. Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of Ocean and Wind Energy, 2015, 1 (2): 21- 27. |
| 9 | 王勇,孙光,崔艳,等.鳐鱼式液态金属磁流体发电装置及发电方法: 201610191945.5[P]. 2016-03-30. |
| 10 | HARTMANN J . Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field[J]. Math.-fys. Medd, 1937, 15 (6): 1- 28. |
| 11 |
SHERCLIFF J A . Steady motion of conducting fluids in pipes under transverse magnetic fields[J]. Proceedings of the Cambridge Philosophical Society, 1953, 49, 136- 144.
doi: 10.1017/S0305004100028139 |
| 12 |
HUNT J C R . Magnetohydrodynamic flow in rectangular ducts[J]. Journal of Fluid Mechanics, 1965, 21 (4): 577- 590.
doi: 10.1017/S0022112065000344 |
| 13 | STERL A . Numerical simulation of liquid-metal MHD flows in rectangular ducts[J]. Journal of Fluid Mechanics, 1990, 216 (1): 161- 191. |
| 14 |
KOBAYASHI H , SHIONOYA H , OKUNO Y . Turbulent duct flows in a liquid metal magnetohydrodynamic power generator[J]. Journal of Fluid Mechanics, 2012, 713, 243- 270.
doi: 10.1017/jfm.2012.456 |
| 15 |
HUANG Z Y , LIU Y J , WANG Z Y , et al. Three-dimensional simulations of MHD generator coupling with outer resistance circuit[J]. Simulation Modelling Practice and Theory, 2015, 54, 1- 18.
doi: 10.1016/j.simpat.2015.02.006 |
| 16 | HU L C. Numerical study of performance and turbulent flows in a liquid metal MHD generator[D]. Tokyo: Department of Energy Sciences, Tokyo Institute of Technology, 2015. |
| 17 | ZHAO L Z, PENG Y, SHA C W, et al. End effect of liquid metal magnetohydrodynamic generator in wave energy direct conversion system[C]//International Conference on Sustainable Power Generation and Supply, 2009. Supergen. Nanjing, China: IEEE, 2009: 1-6. |
| 18 |
SMOLENTSV S , ABDOU M , MORLEY N , et al. Application of the "K-ε" model to open channel flows in a magnetic field[J]. International Journal of Engineering Science, 2002, 40, 693- 711.
doi: 10.1016/S0020-7225(01)00088-X |
| 19 | 吴其芬, 李桦. 磁流体力学[M]. 长沙: 国防科技大学出版社, 2007: 49- 52. |
| 20 | SUBRAMANIAN S , SWAIN P K , DESHPANDE A V , et al. Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers[J]. Indian Academy of Sciences, 2015, 40 (3): 851- 861. |
| [1] | 刘启明,王文辉,潘英楠,高要辉,郑程程,贺鹏. 厚度缺陷对初支结构安全性的影响及风险评价[J]. 山东大学学报 (工学版), 2025, 55(5): 165-178. |
| [2] | 义扬,肖映雄,余科. 任意多边形骨料混凝土细观模型的建立与数值模拟[J]. 山东大学学报 (工学版), 2025, 55(1): 97-107. |
| [3] | 陈文举, 陈俐企, 包春波, 朱启银, 惠冰, 庄培芝. 循环管道加热桥面融雪效能数值模拟[J]. 山东大学学报 (工学版), 2024, 54(6): 100-110. |
| [4] | 胡涛涛,李禹,高咸超. 考虑应变率和层理倾角的炭质板岩动力学特性及本构模型[J]. 山东大学学报 (工学版), 2024, 54(5): 122-131. |
| [5] | 马川义,冯豪杰,蒋红光,侯天新,姚占勇,杨为民. 吸水土工布对路基湿度控制效果的数值模拟[J]. 山东大学学报 (工学版), 2024, 54(4): 141-149. |
| [6] | 韩超,王彤,陈德文,孙恩赐,李平,吴则祥,周冲,庄培芝. 基于耦合欧拉-拉格朗日方法的砂土中静压桩挤土效应数值模拟[J]. 山东大学学报 (工学版), 2024, 54(2): 143-152. |
| [7] | 王钰鑫,吕思忠,姚望,林春金,张明,李召峰,张健,王衍升. 粉质黏土地层桩侧劈裂注浆参数设计与效果评价[J]. 山东大学学报 (工学版), 2023, 53(6): 70-81. |
| [8] | 张亚平,马唯婧,张宸硕,肖辉,张一鸣. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报 (工学版), 2023, 53(6): 122-130. |
| [9] | 宋洋,罗志恒,张波,张宇,朱敏. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报 (工学版), 2023, 53(5): 121-131. |
| [10] | 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30. |
| [11] | 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59. |
| [12] | 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99. |
| [13] | 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121. |
| [14] | 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78. |
| [15] | 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213. |
|