山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 107-113.doi: 10.6040/j.issn.1672-3961.0.2017.385
摘要:
为了改善作为低级表示的尺度不变特征变换(scale invariant feature transform, SIFT)匹配常出现的没有足够特征来防止假匹配的问题,提出在传统方法“词袋”(bag of features, BOF)算法中融合具有较好语义分割能力的卷积神经网络(convolution neural network, CNN)特征来提高识别率的方法。利用ImageCLEF网站的LifeCLEF鱼类视频,制作目标图像数据库。在caffe平台的Alexnet模型进行卷积神经网络的训练,提取图像库和查询图像的特征。利用训练好的CNN特征在Matlab软件进行识别试验验证,计算汉明距离来验证匹配效果。改变参数值来观察不同汉明距离阈值对水下目标识别结果的影响。自制图像库的试验表明,融合深度学习的特征可以有效提高BOF算法的水下目标识别率,对汉明距离阈值的选择需要根据实际情况选择合适的参数。
中图分类号:
| 1 | JAFFE J S , MOORE K D , MCLEAN J , et al. Underwater optical imaging: status and prospects[J]. Oceanography, 2001, 14 (3): 66- 76. |
| 2 | 王士龙, 徐玉如, 万磊, 等. 基于边界矩和改进FCM聚类的水下目标识别[J]. 系统工程理论与实践, 2012, 32 (12): 2809- 2815. |
| WANG Shilong , XU Yuru , WANG Lei , et al. Underwater targets recognition based on contour moment and modified FCM algorithm[J]. System Engineering Theory and Practice, 2012, 32 (12): 2809- 2815. | |
| 3 |
FATAN M , DALIRI M R , MOHAMMAD S A , et al. Underwater cable detection in the images using edge classification based on texture information[J]. Measurement, 2016, 91, 309- 317.
doi: 10.1016/j.measurement.2016.05.030 |
| 4 | 乔曦.基于水下机器视觉的海参实时识别研究[D].北京:中国农业大学, 2017. |
| QIAO Xi. Sea cucumber identification in real-time based on underwater machine vision technique[D]. Beijing: China Agricultural University, 2017. | |
| 5 |
LOWE D G . Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
| 6 | BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[C]//Computer Vision-ECCV 2006. Graz, Austria: Springer Berlin Heidelberg, 2006: 404-417. |
| 7 |
ZHENG Z Z , YUN Z , YAN L X . Global and local exploitation for saliency using bag-of-words[J]. IET Computer Vision, 2014, 8 (4): 299- 304.
doi: 10.1049/iet-cvi.2013.0132 |
| 8 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems. Lake Tahoe, Spain: IEEE, 2012: 1097-1105. |
| 9 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
| 10 |
LECUN Y , BOTTOU L , BENGIO Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.
doi: 10.1109/5.726791 |
| 11 | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1-9. |
| 12 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//CVPR 16: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Vegas, USA: IEEE, 2016: 770-778. |
| 13 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 1337-1342. |
| 14 | EKANAYAKE J, PALLICKARE S. Map reduce for data intensive scientific analysis[C]//IEEE Science. Piscatway, USA: IEEE, 2008: 277-284. |
| 15 | LAZEBNIK S, SCHMID C, PONCE J. Video google: a text retrieval approach to object matching in videos[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006: 2169-2178. |
| 16 | SIVIC J, ZISSERMAN A. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of Ninth IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1470-1477. |
| 17 |
JEGOU H , DOYZE M , SCHMID C . Improving bag of features for large scale image search[J]. International Journal of Computer Vision, 2010, 87 (3): 316- 336.
doi: 10.1007/s11263-009-0285-2 |
| 18 |
ZHANG G X , ZENG Z , ZHANG S W , et al. SIFT matching with CNN evidences for particular object retrieval[J]. Neurocomputing, 2017, 238, 399- 409.
doi: 10.1016/j.neucom.2017.01.081 |
| 19 | RUSSAKOVSKY O , DENG J , SU H , et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2014, 115 (3): 211- 252. |
| 20 |
CAMPBELL A T , MEER H G D , KOUNAVIS M E , et al. A survey of programmable networks[J]. ACM Computer Communications Review, 1999, 29 (2): 7- 23.
doi: 10.1145/505733 |
| 21 | LI X, SHANG M, QIN H W, et al. Fast Accurate Fish detection and recognition of Underwater Images with Fast R-CNN[C]//Oceans. Washington, USA: IEEE, 2015: 1-5. |
| 22 | JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM international conference on Multimedia. Orlando, USA: arXiv, 2014: 675-678. |
| [1] | 董明书,陈俐企,马川义,张珠皓,孙仁娟,管延华,庄培芝. 沥青路面内部裂缝雷达图像智能判识算法研究[J]. 山东大学学报 (工学版), 2025, 55(3): 72-79. |
| [2] | 李伟豪,王苹苹,许万博,魏本征. 结构先验引导的多模态腰椎MRI图像分割算法[J]. 山东大学学报 (工学版), 2025, 55(1): 66-76. |
| [3] | 马翔悦,徐金东,倪梦莹. 基于多尺度特征模糊卷积神经网络的遥感图像分割[J]. 山东大学学报 (工学版), 2024, 54(3): 44-54. |
| [4] | 迟云浩,杨璐,郭杰,郝凡昌,聂秀山. 基于注意力特征融合网络的手指静脉图像质量评价方法[J]. 山东大学学报 (工学版), 2023, 53(6): 56-62. |
| [5] | 那绪博,张莹,李沐阳,陈元畅,华云鹏. 基于ODCG的网约车需求预测模型[J]. 山东大学学报 (工学版), 2023, 53(5): 48-56. |
| [6] | 范海雯,郝旭东,赵康,邢法财,蒋哲,李常刚. 基于卷积神经网络的含分布式光伏配电网静态等值[J]. 山东大学学报 (工学版), 2023, 53(4): 140-148. |
| [7] | 王智伟,徐海超,郭相阳,马炯,褚云龙,陈前昌,卢治. 基于卷积神经网络和层次分析的新能源电源调频能力智能预测方法[J]. 山东大学学报 (工学版), 2022, 52(5): 70-76. |
| [8] | 尹旭,刘兆英,张婷,李玉鑑. 基于弱监督和半监督学习的红外舰船分割方法[J]. 山东大学学报 (工学版), 2022, 52(2): 99-106. |
| [9] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
| [10] | 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49. |
| [11] | 陶亮,刘宝宁,梁玮. 基于CNN-LSTM 混合模型的心律失常自动检测[J]. 山东大学学报 (工学版), 2021, 51(3): 30-36. |
| [12] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
| [13] | 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34. |
| [14] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
| [15] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
|