Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (5): 18-29.doi: 10.6040/j.issn.1672-3961.0.2024.163

• Electrical Engineering—Special Issue for Smart Energy • Previous Articles     Next Articles

Robust unit commitment model with multi-energy coupled system considering gas-heat network dynamics

ZHANG Yumin1, LI Jingrui1, YANG Ming2, JI Xingquan1*, SUN Donglei3, XU Bo4, WU Fucheng5   

  1. ZHANG Yumin1, LI Jingrui1, YANG Ming2, JI Xingquan1*, SUN Donglei3, XU Bo4, WU Fucheng5(1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    3. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    4. Electric Power Planning and Engineering Institute Co., Ltd., Beijing 100120, China;
    5. State Grid Zhucheng Power Supply Company, Zhucheng 262299, Shandong, China
  • Online:2025-10-20 Published:2025-10-17

Abstract: The inherent intermittency and uncertainty of renewable energy sources had a challenge to operation decisions of the system. To solve this problem, a robust unit commitment model with multi-energy coupled system considering gas-heat network dynamics was proposed. The mathematical expressions that characterize the dynamic characteristics of gas network and thermal network were established, which were incorporated into the robust unit commitment optimization model of multi-energy coupled system. A multi-dimensional uncertainty set from the perspectives of interval, time, and space to achieve flexible adjustment of wind power absorption boundaries was established. At the same time, concentrating solar power was used to replace the output of some thermal power units to further improve the utilization rate of renewable energy. The column-and-constraint generation algorithm was employed to transform the established min-max-min structure optimization model into a mixed-integer linear programming master-subproblem form for optimization, improving the solution speed of the model. The effectiveness of the proposed model and method was verified on 6-6-8 and 118-20-16 electricity-gas-heat systems, with results indicating that the dynamic characteristics of gas and heat networks can improve the economy of system operation and the utilization rate of renewable energy.

Key words: multi-energy coupled system, dynamic characteristics, renewable energy, unit commitment, column-and-constraint generation algorithm

CLC Number: 

  • TM731
[1] LI P, YANG M, WU Q W. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1):58-69.
[2] SHI J, WANG L H, LEE W, et al. Hybrid energy storage system optimization enabling very short-term wind power generation scheduling based on output feature extraction[J]. Applied Energy, 2019, 256:113915.
[3] 陈飞雄, 颜熙颖, 邵振国, 等. 综合能源系统建模与能流计算方法研究综述[J]. 高电压技术, 2024, 50(4):1376-1391. CHEN Feixiong, YAN Xiying, SHAO Zhenguo, et al. Review on modeling and energy flow calculation methods for integrated energy systems[J]. High Voltage Engineering, 2024, 50(4):1376-1391.
[4] ZHANG Y M, SUN P K, JI X Q, et al. Low-carbon economic dispatch of integrated energy systems considering extended carbon emission flow[J]. Journal of Modern Power Systems and Clean Energy, 2024, 12(6):1798-1809.
[5] WANG K, WANG C F, YAO W L, et al. Embedding P2P transaction into demand response exchange:a cooperative demand response management framework for IES[J]. Applied Energy, 2024, 367:123319.
[6] 张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5):669-681. ZHANG Cheng, KUANG Yu, CHEN Wenxing, et al. Low carbon economy optimization of integrated energy system considering electric vehicle charging mode and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5):669-681.
[7] 李春燕, 唐瞻文, 汤佶元, 等. 极端灾害下基于综合需求响应的电-水-气综合能源系统负荷恢复策略[J]. 高电压技术, 2024, 50(4):1403-1415. LI Chunyan, TANG Zhanwen, TANG Jiyuan, et al. Load recovery strategy for integrated electricity-water-gas energy system based on integrated demand response under extreme disasters[J]. High Voltage Engineering, 2024, 50(4):1403-1415.
[8] 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(9):21-33. ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatching of integrated energy system based on dual response of carbon intensity and energy price[J]. Automation of Electric Power Systems, 2024, 48(9): 21-33.
[9] LI Z M, XU Y, WANG P, et al. Coordinated preparation and recovery of a post-disaster multi-energy distribution system considering thermal inertia and diverse uncertainties[J]. Applied Energy, 2023, 336:120736.
[10] 林卓然, 朱晓东, 王守相, 等. 考虑热网动态特性与碳交易的电-热综合能源系统优化调度[J]. 电力系统及其自动化学报, 2022, 34(4):64-70. LIN Zhuoran, ZHU Xiaodong, WANG Shouxiang, et al. Optimal scheduling of electric-thermal integrated energy system considering dynamic characteristics of heating network and carbon trading[J]. Proceedings of the CSU-EPSA, 2022, 34(4):64-70.
[11] CHEN X, WANG C F, WU Q W, et al. Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power[J]. Energy, 2020, 198:117270.
[12] 张惠智, 程志韬, 贾嵘, 等. 考虑天然气动态特性的电-气综合能源系统经济优化调度[J]. 电网技术, 2021, 45(4):1304-1311. ZHANG Huizhi, CHENG Zhitao, JIA Rong, et al. Economic optimization of electric-gas integrated energy system considering dynamic characteristics of natural gas[J]. Power System Technology, 2021, 45(4):1304-1311.
[13] 林勇棋, 邵振国, 陈飞雄, 等. 基于气网划分的电-气综合能源系统分布式低碳经济调度[J]. 电网技术, 2023, 47(7):2639-2645. LIN Yongqi, SHAO Zhenguo, CHEN Feixiong, et al. Distributed low-carbon economic scheduling of integrated electricity and gas system based on gas network division[J]. Power System Technology, 2023, 47(7):2639-2645.
[14] 梅建春, 卫志农, 张勇, 等. 电-气互联综合能源系统多时间尺度动态优化调度[J]. 电力系统自动化, 2018, 42(13):36-42. MEI Jianchun, WEI Zhinong, ZHANG Yong, et al. Dynamic optimal dispatch with multiple time scale in integrated power and gas energy systems[J]. Automation of Electric Power Systems, 2018, 42(13):36-42.
[15] YANG J W, ZHANG N, KANG C Q, et al. Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty[J]. IEEE Transactions on Power Systems, 2017, 33(2):2087-2097.
[16] 徐文军, 吴梦凯, 潘夏, 等. 考虑条件风险价值和热网动态特性的电-热系统储能鲁棒优化配置[J]. 浙江电力, 2022, 41(9):50-57. XU Wenjun, WU Mengkai, PAN Xia, et al. Robust optimization configuration of energy storage in electric-thermal system con-sidering CVaR and dynamic characteristics of heat networks[J]. Zhejiang Electric Power, 2022, 41(9):50-57.
[17] WANG D, ZHI Y Q, JIA H J, et al. Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes[J]. Applied Energy, 2019, 240:341-358.
[18] 王婉璐, 杨莉, 王蕾, 等. 考虑供热网储热特性的电-热综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(21):45-52. WANG Wanlu, YANG Li, WANG Lei, et al. Optimal dispatch of integrated electricity-heat energy system considering heat storage characteristics of heating network[J]. Automation of Electric Power Systems, 2018, 42(21):45-52.
[19] LI Z G, WU W C, MOHAMMAD S, et al. Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1):12-22.
[20] 董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电-气-热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42(13):12-19. DONG Shuai, WANG Chenfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42(13):12-19.
[21] 张玉敏, 张旋, 吉兴全, 等. 计及电-气-热IES动态特性的输配协同机组组合[J]. 中国电机工程学报, 2022, 42(23):8576-8592. ZHANG Yumin, ZHANG Xuan, JI Xingquan, et al. Synergetic unit commitment of transmission and distribution network considering dynamic characteristics of electricity-gas-heat integrated energy system[J]. Proceedings of the CSEE, 2022, 42(23):8576-8592.
[22] 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36(21):5765-5775. DU Ershun, ZHANG Ning, KANG Chongqing, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36(21):5765-5775.
[23] DU E S, ZHANG N, HODGE B M, et al. Economic justification of concentrating solar power in high renewable energy penetrated power systems[J]. Applied Energy, 2018, 222(3):649-661.
[24] 崔杨, 杨志文, 仲悟之, 等. 基于成本最优的含储热光热电站与火电机组联合出力日前调度[J]. 电力自动化设备, 2019, 39(2):71-77. CUI Yang, YANG Zhiwen, ZHONG Wuzhi, et al. Day-ahead dispatch for output of combined CSP with thermal storage system and thermal power units based on minimized operation cost[J]. Electric Power Automation Equipment, 2019, 39(2):71-77.
[25] 张玉敏, 吴福成, 张少梅, 等. 计及CVaR的含光热电站的鲁棒机组组合模型[J]. 智慧电力, 2023, 51(10):62-69. ZHANG Yumin, WU Fucheng, ZHANG Shaomei, et al. Robust unit commitment model with concentrating solar power plants considering CVaR[J]. Smart Power, 2023, 51(10):62-69.
[26] 张玉敏, 孙鹏凯, 吉兴全, 等. 基于并行多维近似动态规划的综合能源系统动态经济调度[J]. 电力系统自动化, 2023, 47(4):60-68. ZHANG Yumin, SUN Pengkai, JI Xingquan, et al. Dynamic economic dispatch for integrated energy system based on parallel multi-dimensional approximate dynamic programming[J]. Automation of Electric Power Systems, 2023, 47(4):60-68.
[27] 高海淑, 张玉敏, 吉兴全, 等. 基于场景聚类的主动配电网分布鲁棒综合优化[J]. 电力系统自动化, 2020, 44(21):32-41. GAO Haishu, ZHANG Yumin, JI Xingquan, et al. Scenario clustering based distributionally robust comprehensive optimization of active distribution network[J]. Automation of Electric Power Systems, 2020, 44(21):32-41.
[28] 吉兴全, 刘健, 张玉敏, 等. 计及运行灵活性约束的综合能源系统优化调度[J]. 电力系统自动化, 2022, 46(16):84-94. JI Xingquan, LIU Jian, ZHANG Yumin, et al. Optimal dispatching of integrated energy system considering operation flexibility constraints[J]. Automation of Electric Power Systems, 2022, 46(16):84-94.
[29] WANG J H, MOHAMMAD S, LI Z Y. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3):1319-1327.
[1] Hengxu ZHANG,Zhimin GAO,Yongji CAO,Hao QIN,Dong YANG,Huan MA. Review and prospect of research on power system inertia with high penetration of renewable energy source [J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13.
[2] Dexin LI, Chonglin ZONG, Jiarui WANG, Haifeng ZHANG, Chang LIU, Dawei HUANG. Day-ahead optimal scheduling considering the constraints of UHVDC transmission and wheeling contracts [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 69-75.
[3] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. Wind and PV installed capacity optimization with hybrid uncertainty of renewable energy [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 101-108.
[4] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. PV installed capacity planning for power distribution network based on time series production simulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 131-136.
[5] ZHANG Hengxu, SHI Xiaohan, LIU Yutian, YANG Dong. Support of the renewable energy base in northwest of China on the construction of global energy interconnection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 96-102.
[6] PAN Zhi-yuan1, HAN Xue-shan1*, LIU Chao-nan2. Unit commitment considering alternating current power flow constraints [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 130-137.
[7] YANG Pengpeng, WANG Kui, LI Lei, ZHAO Lanming. Bi-level programming research on unit commitment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 167-172.
[8] MA Bao-dong1, GAO Bao-yu2*, LU Lei3, ZHANG Yong-qiang2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 117-120.
[9] GAO Hou-Lei, TIAN Jia, DU Jiang, WU Zhi-Gang, LIU Chu-Min. Distributed generation—new technology in energy development [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 106-110.
[10] YANG Peng-peng,HAN Xue-shan,WANG Jing,MENG Xing-xin . Unit commitment with analytic expression of probability reserve by Lagrangian relaxation method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 58-62 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[9] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .