Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (5): 1-17.doi: 10.6040/j.issn.1672-3961.0.2024.115
• Electrical Engineering—Special Issue for Smart Energy •
LI Changgang1, LI Baoliang1, CAO Yongji2*, WANG Jiaying3
CLC Number:
| [1] 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45(18): 1-8. CAO Yongji, ZHANG Hengxu, SHI Xiaohan, et al. Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric Power Systems, 2021, 45(18): 1-8. [2] LI P H, WU W C, WANG X M, et al. A data-driven linear optimal power flow model for distribution networks[J]. IEEE Transactions on Power Systems, 2022, 38(1): 956-959. [3] FAN Z X, YANG Z F, YU J, et al. Minimize linearization error of power flow model based on optimal selection of variable space[J]. IEEE Transactions on Power Systems, 2021, 36(2): 1130-1140. [4] 张恒旭, 高志民, 曹永吉, 等. 高比例可再生能源接入下电力系统惯量研究综述及展望[J]. 山东大学学报(工学版), 2022, 52(5): 1-13. ZHANG Hengxu, GAO Zhimin, CAO Yongji, et al. Review and prospect of research on power system inertia with high penetration of renewable energy source[J]. Journal of Shandong University(Engineering Science), 2022, 52(5): 1-13. [5] 张亚平, 马唯婧, 张宸硕, 等. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报(工学版), 2023, 53(6): 122-130. ZHANG Yaping, MA Weijing, ZHANG Chenshuo, et al. Integrated analysis of transmission and transformation towers based on image recognition and CAE simulation technology[J]. Journal of Shandong University(Engi-neering Science), 2023, 53(6): 122-130. [6] 李兴华. 基于规则的电力系统潮流自动调整研究[D]. 武汉: 华中科技大学, 2007. LI Xinghua. Research on auto adiustment in power flow based on rule[D]. Wuhan: Huazhong University of Science and Technology, 2007. [7] 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52. [8] GAO Q, YANG Z F, YU J, et al. Model-driven architecture of extreme learning machine to extract power flow features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(10): 4680-4690. [9] KHODAYAR M, LIU G Y, WANG J H, et al. Deep learning in power systems research: a review[J]. CSEE Journal of Power and Energy Systems, 2021, 7(2): 209-220. [10] ZHANG Y, SHI X H, ZHANG H X, et al. Review on deep learning applications in frequency analysis and control of modern power system[J]. International Journal of Electrical Power & Energy Systems, 2022, 136: 107744. [11] 余涛, 周斌, 甄卫国. 强化学习理论在电力系统中的应用及展望[J]. 电力系统保护与控制, 2009, 37(14): 122-128. YU Tao, ZHOU Bin, ZHEN Weiguo. Application and development of reinforcement learning theory in power systems[J]. Power System Protection and Control, 2009, 37(14): 122-128. [12] ROTHMANN M, PORRMANN M. A survey of domain-specific architectures for reinforcement learning[J]. IEEE Access, 2022, 10: 13753-13767. [13] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [14] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [15] LIAO S, LI S B, LIU J Y, et al. A zeroing neural dynamics based acceleration optimization approach for optimizers in deep neural networks[J]. Neural Networks, 2022, 150: 440-461. [16] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. [17] WANG X P. Research and optimization of BP neural network algorithm[C] //2015 Seventh International Conference on Measuring Technology and Mechatronics Automation. Nanchang, China: IEEE, 2015: 818-822. [18] PEI X J, TIAN S W, YU L, et al. A two-stream network based on capsule networks and sliced recurrent neural networks for DGA botnet detection[J]. Journal of Network and Systems Management, 2020, 28(4): 1694-1721. [19] HUANG Z L, YANG F F, XU F, et al. Convolutional gated recurrent unit-recurrent neural network for state-of-charge estimation of lithium-ion batteries[J]. IEEE Access, 2019, 7: 93139-93149. [20] DING S Y, WANG Z J, KONG W J, et al. Electrode regulating system modeling in electrical smelting furnace using recurrent neural network with attention mechanism[J]. Neurocomputing, 2019, 359: 32-40. [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [22] WANG Z, ZHENG X, LI D Y, et al. A VGGNet-like approach for classifying and segmenting coal dust particles with overlapping regions[J]. Computers in Industry, 2021, 132: 103506. [23] SHEHAB L H, FAHMY O M, GASSER S M, et al. An efficient brain tumor image segmentation based on deep residual networks(ResNets)[J]. Journal of King Saud University-Engineering Sciences, 2021, 33(6): 404-412. [24] LIAO T T, LI L, OUYANG R S, et al. Classification of asymmetry in mammography via the DenseNet convolutional neural network[J]. European Journal of Radiology Open, 2023, 11: 100502. [25] CHENG X R, CUI B J, HOU S Z. Fault line selection of distribution network based on modified CEEMDAN and GoogLeNet neural network[J]. IEEE Sensors Journal, 2022, 22(13): 13346-13364. [26] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [27] LU W, JIANG N, JIN D, et al. Learning distinct relationship in package recommendation with graph attention networks[J]. IEEE Transactions on Com-putational Social Systems, 2023, 10(6): 3308-3320. [28] CHEN C C, LI Q, CHEN L, et al. An improved GraphSAGE to detect power system anomaly based on time-neighbor feature[J]. Energy Reports, 2023, 9: 930-937. [29] YAO X, ZHU H Y, GU M. Brain-inspired GCN: modularity-based Siamese simple graph convolutional networks[J]. Information Sciences, 2024, 657: 119971. [30] TIAN J, LI P. An intrusion detection algorithm of dynamic recursive deep belief networks[C] //Proceedings of the 2017 International Conference on Information Technology. Singapore: ACM, 2017: 180-183. [31] DONG Q L, GE F F, NING Q, et al. Modeling hierarchical brain networks via volumetric sparse deep belief network[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(6): 1739-1748. [32] WANG G M, QIAO J F, BI J, et al. TL-GDBN: growing deep belief network with transfer learning[J]. IEEE Transactions on Automation Science and Engi-neering, 2019, 16(2): 874-885. [33] FEI R, SHA J Y, XU Q Z, et al. A new deep sparse autoencoder for community detection in complex networks[J]. EURASIP Journal on Wireless Communi-cations and Networking, 2020, 2020: 91. [34] KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends© in Machine Learning, 2019, 12(4): 307-392. [35] DIALLO B, HU J, LI T R, et al. Deep embedding clustering based on contractive autoencoder[J]. Neuro-computing, 2021, 433: 96-107. [36] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful repre-sentations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408. [37] 赵婷婷, 孔乐, 韩雅杰, 等. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927. ZHAO Tingting, KONG Le, HAN Yajie, et al. Review of model-based reinforcement learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 918-927. [38] MA Y, CHANG T Q, FAN W H. A single-task and multi-decision evolutionary game model based on multi-agent reinforcement learning[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 642-657. [39] CHEN X, LI Z, WANG K, et al. MDP-based network selection with reward optimization in HetNets[J]. Chinese Journal of Electronics, 2018, 27(1): 183-190. [40] YANG Y, LI J T, PENG L L. Multi-robot path planning based on a deep reinforcement learning DQN algorithm[J]. CAAI Transactions on Intelligence Technology, 2020, 5(3): 177-183. [41] YUAN H, NI J, HU J B. A centralised training algorithm with D3QN for scalable regular unmanned ground vehicle formation maintenance[J]. IET Intelli-gent Transport Systems, 2021, 15(4): 562-572. [42] XU W F, LI Y H, PEI B B, et al. Coordinated intelligent control of the flight control system and shape change of variable sweep morphing aircraft based on dueling-DQN[J]. Aerospace Science and Technology, 2022, 130: 107898. [43] PAN J, WANG X S, CHENG Y H, et al. Multisource transfer double DQN based on actor learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2227-2238. [44] LIU X H, ZHANG H W, DONG S Q, et al. Network defense decision-making based on a stochastic game system and a deep recurrent Q-network[J]. Computers & Security, 2021, 111: 102480. [45] WU J L, WU Q M J, CHEN S Y, et al. A-TD3: an adaptive asynchronous twin delayed deep deterministic for continuous action spaces[J]. IEEE Access, 2022, 10: 128077-128089. [46] HUO W W, ZHAO T Y, YANG F, et al. An improved soft actor-critic based energy management strategy of fuel cell hybrid electric vehicle[J]. Journal of Energy Storage, 2023, 72: 108243. [47] MENG W J, ZHENG Q, SHI Y, et al. An off-policy trust region policy optimization method with monotonic improvement guarantee for deep reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2223-2235. [48] TANG C Y, LIU C H, CHEN W K, et al. Implementing action mask in proximal policy optimization(PPO)algorithm[J]. ICT Express, 2020, 6(3): 200-203. [49] TAN C D, WANG C Q, TIAN J J, et al. Optimization of profile control and oil displacement scheme parameters based on deep deterministic policy gradient[J]. ACS Omega, 2023, 8(26): 23739-23753. [50] SHEN H, ZHANG K Q, HONG M Y, et al. Towards understanding asynchronous advantage actor-critic: convergence and linear speedup[J]. IEEE Transactions on Signal Processing, 2023, 71: 2579-2594. [51] JIN Z H, WU J H, LIU A D, et al. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2021, 69(2): 1898-1908. [52] JI Y, YUAN J, QIAN J F, et al. Power flow calculation in smart distribution network based on power machine learning based on fractional differential equations[J]. Applied Mathematics and Nonlinear Sciences, 2023, 8(1): 1037-1044. [53] 彭慧敏, 袁虎玲, 鲍颜红, 等. 大电网病态潮流的识别和修正方法[J]. 电力系统保护与控制, 2018, 46(22): 116-123. PENG Huimin, YUAN Huling, BAO Yanhong, et al. Identification and correction method for ill-conditioned power flow of large scale network[J]. Power System Protection and Control, 2018, 46(22): 116-123. [54] 安军, 宋俊达, 葛维春. 大规模电力系统潮流计算收敛性诊断与调整方法[J]. 电力自动化设备, 2020, 40(2): 103-109. AN Jun, SONG Junda, GE Weichun. Convergence identification and adjustment method of power flow calculation for large-scale power system[J]. Electric Power Automation Equipment, 2020, 40(2): 103-109. [55] KARIMI M, SHAHRIARI A, AGHAMOHAMMADI M R, et al. Application of Newton-based load flow methods for determining steady-state condition of well and ill-conditioned power systems: a review[J]. International Journal of Electrical Power & Energy Systems, 2019, 113: 298-309. [56] CAO Y J, ZHANG Y, ZHANG H X, et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1291-1300. [57] 朱星阳, 刘文霞, 张建华, 等. 电力系统随机潮流及其安全评估应用研究综述[J]. 电工技术学报, 2013, 28(10): 257-270. ZHU Xingyang, LIU Wenxia, ZHANG Jianhua, et al. Reviews on power system stochastic load flow and its applications in safety evaluation[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 257-270. [58] RAMADHANI U H, SHEPERO M, MUNKHAMMAR J, et al. Review of probabilistic load flow approaches for power distribution systems with photovoltaic generation and electric vehicle charging[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 106003. [59] DE MEL I, KLYMENKO O V, SHORT M. Balancing accuracy and complexity in optimisation models of distributed energy systems and microgrids with optimal power flow: a review[J]. Sustainable Energy Tech-nologies and Assessments, 2022, 52: 102066. [60] YANG Z F, ZHONG H W, XIA Q, et al. Fundamental review of the OPF problem: challenges, solutions, and state-of-the-art algorithms[J]. Journal of Energy Engineering, 2018, 144(1): 04017075. [61] YU Z, BAO Y Q. Data-driven power flow calculation based on deep learning[C] //2021 IEEE 5th Conference on Energy Internet and Energy System Integration(EI2). Taiyuan, China: IEEE, 2021: 3230-3234. [62] 杨梅, 刘俊勇, 刘挺坚, 等. 节点图和边图切换卷积驱动的快速静态安全分析方法[J]. 电网技术, 2021, 45(6): 2070-2080. YANG Mei, LIU Junyong, LIU Tingjian, et al. Switching convolution of node graph and line graph-driven method for fast static security analysis[J]. Power System Technology, 2021, 45(6): 2070-2080. [63] VYAKARANAM B, MAHAPATRA K, LI X Y, et al. Novel data-driven distributed learning framework for solving AC power flow for large interconnected systems[J]. IEEE Open Access Journal of Power and Energy, 2021, 8: 281-292. [64] XU H, YU Z, ZHENG Q, et al. Improved deep reinforcement learning based convergence adjustment method for power flow calculation[C] //The 16th IET International Conference on AC and DC Power Transmission(ACDC 2020). [S.l.] : IET, 2020: 1898-1903. [65] 王甜婧, 汤涌, 郭强, 等. 基于知识经验和深度强化学习的大电网潮流计算收敛自动调整方法[J]. 中国电机工程学报, 2020, 40(8): 2396-2406. WANG Tianjing, TANG Yong, GUO Qiang, et al. Automatic adjustment method of power flow calculation convergence for large-scale power grid based on knowledge experience and deep reinforcement learning[J]. Proceedings of the CSEE, 2020, 40(8): 2396-2406. [66] 郑清平. 基于深度强化学习的电网断面功率调整研究[D]. 北京: 北京邮电大学, 2021. ZHENG Qingping. Research on tie-line power of grid adjustment based on deep reinforcement learning[D]. Beijing: Beijing University of Posts and Telecom-munications, 2021. [67] WANG T J, TANG Y. An unsolvable power flow adjustment method for weak power grid based on transmission channel positioning and deep reinforcement learning[J]. Electric Power Systems Research, 2022, 210: 108050. [68] PU T J, WANG X Y, CAO Y F, et al. Power flow adjustment for smart microgrid based on edge computing and multi-agent deep reinforcement learning[J]. Journal of Cloud Computing, 2021, 10(1): 48. [69] 杨晓东, 严剑峰, 刘佳霖. 结合深度强化学习与人工经验的电网输电断面功率调整方法[J]. 电力系统自动化, 2023, 47(15): 133-141. YANG Xiaodong, YAN Jianfeng, LIU Jialin. Power adjustment method for transmission section in power grid combining deep reinforcement learning and artificial experience[J]. Automation of Electric Power Systems, 2023, 47(15): 133-141. [70] XU H T, YU Z H, ZHENG Q P, et al. Deep reinforcement learning-based tie-line power adjustment method for power system operation state calculation[J]. IEEE Access, 2019, 7: 156160-156174. [71] 余娟, 杨燕, 杨知方, 等. 基于深度学习的概率能量流快速计算方法[J]. 中国电机工程学报, 2019, 39(1): 22-30. YU Juan, YANG Yan, YANG Zhifang, et al. Fast probabilistic energy flow analysis based on deep learning[J]. Proceedings of the CSEE, 2019, 39(1): 22-30. [72] WANG D W, ZHENG K D, CHEN Q X, et al. A data-driven probabilistic power flow method based on convolutional neural networks[J]. International Tran-sactions on Electrical Energy Systems, 2020, 30(7): e12367. [73] SONG S, JUNG Y, HAN C, et al. Recurrent neural-network-based maximum frequency deviation prediction using probability power flow dynamic tool[J]. IEEE Access, 2020, 8: 182054-182064. [74] XIAO H, PEI W, WU L, et al. A novel deep learning based probabilistic power flow method for multi-microgrids distribution system with incomplete network information[J]. Applied Energy, 2023, 335: 120716. [75] WU H Y, WANG M H, XU Z, et al. Graph attention enabled convolutional network for distribution system probabilistic power flow[J]. IEEE Transactions on Industry Applications, 2022, 58(6): 7068-7078. [76] 白洁, 王守相, 赵倩宇, 等. 考虑风电出力不确定性的配电网概率潮流计算[J]. 电力系统及其自动化学报, 2021, 33(1): 78-84. BAI Jie, WANG Shouxiang, ZHAO Qianyu, et al. Probabilistic load flow calculation for distribution network considering uncertainties in wind power output[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 78-84. [77] 蔡新雷, 董锴, 崔艳林, 等. 基于长短期记忆网络的电网概率潮流计算及态势感知[J]. 电子器件, 2022, 45(4): 939-946. CAI Xinlei, DONG Kai, CUI Yanlin, et al. Probabilistic power flow calculation and situation awareness based on long short term memory network[J]. Chinese Journal of Electron Devices, 2022, 45(4): 939-946. [78] WU H Y, WANG M H, XU Z, et al. Probabilistic power flow of distribution system based on a graph-aware deep learning network[C] //2021 IEEE/IAS Industrial and Commercial Power System Asia(I&CPS Asia). Chengdu, China: IEEE, 2021: 105-109. [79] DONG Z H, HOU K, LIU Z Y, et al. A sample-efficient OPF learning method based on annealing knowledge distillation[J]. IEEE Access, 2022, 10: 99724-99733. [80] ZHOU M, CHEN M H, LOW S H. DeepOPF-FT: one deep neural network for multiple AC-OPF problems with flexible topology[J]. IEEE Transactions on Power Systems, 2023, 38(1): 964-967. [81] SU Q G, KHAN H U, KHAN I, et al. An optimized algorithm for optimal power flow based on deep learning[J]. Energy Reports, 2021, 7: 2113-2124. [82] JIA Y J, BAI X Q, ZHENG L Q, et al. ConvOPF-DOP: a data-driven method for solving AC-OPF based on CNN considering different operation patterns[J]. IEEE Transactions on Power Systems, 2023, 38(1): 853-860. [83] LI H, LI H J, LU W H, et al. Optimal power flow calculation considering large-scale photovoltaic genera-tion correlation[J]. Frontiers in Energy Research, 2020, 8: 590418. [84] LAN T, DUAN J J, ZHANG B, et al. AI-based autonomous line flow control via topology adjustment for maximizing time-series ATCs[C] //2020 IEEE Power & Energy Society General Meeting(PESGM). Montreal, Canada: IEEE, 2020: 1-5. [85] ZHOU Y H, ZHANG B, XU C L, et al. A data-driven method for fast AC optimal power flow solutions via deep reinforcement learning[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(6): 1128-1139. [86] YAN Z M, XU Y. A hybrid data-driven method for fast solution of security-constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4365-4374. [87] SAYED A R, WANG C, ANIS H I, et al. Feasibility constrained online calculation for real-time optimal power flow: a convex constrained deep reinforcement learning approach[J]. IEEE Transactions on Power Systems, 2023, 38(6): 5215-5227. [88] SUN B W, SONG M G, LI A, et al. Multi-objective solution of optimal power flow based on TD3 deep reinforcement learning algorithm[J]. Sustainable Energy, Grids and Networks, 2023, 34: 101054. [89] 余涛, 刘靖, 胡细兵. 基于分布式多步回溯Q(λ)学习的复杂电网最优潮流算法[J]. 电工技术学报, 2012, 27(4): 185-192. YU Tao, LIU Jing, HU Xibing. Optimal power flow for complex power grid using distributed multi-step backtrack Q(λ)learning[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 185-192. [90] 摆世彬, 严明辉, 徐伟, 等. 含大规模风电集群电网的在线计算数据生成技术[J]. 电力系统保护与控制, 2021, 49(3): 66-73. BAI Shibin, YAN Minghui, XU Wei, et al. An online calculation data generation technology for a power grid integrated with a large-scale wind farm[J]. Power System Protection and Control, 2021, 49(3): 66-73. [91] DU Z M, CHEN K, CHEN S L, et al. Deep learning GAN-based data generation and fault diagnosis in the data center HVAC system[J]. Energy and Buildings, 2023, 289: 113072. [92] LIU X L, SHEN F R, ZHAO J, et al. AugRmixAT: a data processing and training method for improving multiple robustness and generalization performance[C] //2022 IEEE International Conference on Multi-media and Expo(ICME). Taipei, China: IEEE, 2022: 1-6. [93] MOHAMMED A, KORA R. A comprehensive review on ensemble deep learning: opportunities and challenges[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35(2): 757-774. [94] WANG W P, WANG Z R, ZHOU Z F, et al. Anomaly detection of industrial control systems based on transfer learning[J]. Tsinghua Science and Technology, 2021, 26(6): 821-832. [95] 陈祎鹏, 杨哲, 谷飞, 等. 一种基于博弈论的移动边缘计算资源分配策略[J]. 计算机科学, 2023, 50(2): 32-41. CHEN Yipeng, YANG Zhe, GU Fei, et al. Resource allocation strategy based on game theory in mobile edge computing[J]. Computer Science, 2023, 50(2): 32-41. [96] HUSSAIN H, MALIK S U R, HAMEED A, et al. A survey on resource allocation in high performance distributed computing systems[J]. Parallel Computing, 2013, 39(11): 709-736. [97] YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Tran-sactions on Intelligent Systems and Technology, 2019, 10(2): 12. [98] 成科扬, 王宁, 师文喜, 等. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. CHENG Keyang, WANG Ning, SHI Wenxi, et al. Research advances in the interpretability of deep learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. |
| [1] | ZHOU Qunying, SUI Jiacheng, ZHANG Ji, WANG Hongyuan. Industrial product surface defect detection based on self supervised convolution and parameter free attention mechanism [J]. Journal of Shandong University(Engineering Science), 2025, 55(4): 40-47. |
| [2] | DONG Mingshu, CHEN Liqi, MA Chuanyi, ZHANG Zhuhao, SUN Renjuan, GUAN Yanhua, ZHUANG Peizhi. Deep learning-based intelligent judgment for radar detection of pavement cracks [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 72-79. |
| [3] | XUE Bingbing, WANG Yong, YANG Weihao, WANG Chuan, YU Di, WANG Xu. Real-time expressway traffic data imputation and state prediction based on ETC system data [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 58-71. |
| [4] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
| [5] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
| [6] | Tongyu JIANG, Fan CHEN, Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8. |
| [7] | Jianqing WU,Xiuguang SONG. Review on development of simultaneous localization and mapping technology [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31. |
| [8] | Qingfa CHAI,Shoujing SUN,Jifu QIU,Ming CHEN,Zhen WEI,Wei CONG. Prediction method of power grid emergency supplies under meteorological disasters [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 76-83. |
| [9] | YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21. |
| [10] | LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97. |
| [11] | LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39. |
| [12] | Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13. |
| [13] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
| [14] | Delei CHEN, Cheng WANG, Jianwei CHEN, Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27. |
| [15] | Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104. |
|
||