Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (5): 1-13.doi: 10.6040/j.issn.1672-3961.0.2022.237

    Next Articles

Review and prospect of research on power system inertia with high penetration of renewable energy source

Hengxu ZHANG1(),Zhimin GAO1,Yongji CAO2,*(),Hao QIN1,Dong YANG3,Huan MA3   

  1. 1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
    2. Center for Electric Power and Energy, Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
    3. State Grid Shandong Electric Power Research Institute, Jinan 250003, Shandong, China
  • Received:2022-06-27 Online:2022-10-20 Published:2022-10-20
  • Contact: Yongji CAO E-mail:zhanghx@sdu.edu.cn;caoyong@dtu.dk

Abstract:

With the aim of carbon peak and carbon neutrality, the integration of high-proportion renewable energy sources (RESs) makes the low-inertia characteristic of the new power system more obvious. In order to ensure power system security and stability, and support the integration of RESs, the research on the power system inertia was reviewed and prospected. The essence of the power system inertia was introduced, and the correlation among the conventional inertia, virtual inertia and equivalent inertia was discussed, on which the physical significance of the virtual inertia was revealed. From the viewpoints of the sources of inertia, the research on the virtual inertia control of the wind machine, photovoltaic generation, and energy storage system was summarized. Additionally, the assessment methods of power system inertia were reviewed. The important issues to be focused in the research area of power system inertia were summarized, and the suggestions for further studies were provided.

Key words: renewable energy, equivalent inertia, inertia control, inertia assessment, frequency dynamic response

CLC Number: 

  • TM712

Fig.1

Schematic diagram of frequency dynamic response process"

Fig.2

Schematic diagram of inertia composition of power systems"

Fig.3

Schematic diagram of wind power virtual inertia control strategy"

Fig.4

P-U characteristic curve of PV power generation system in MPPT mode"

Fig.5

Schematic diagram of virtual inertia sources for PV power generation"

1 曹永吉, 张恒旭, 施啸寒, 等. 规模化分布式能源参与大电网安全稳定控制的机制初探[J]. 电力系统自动化, 2021, 45 (18): 1- 8.
CAO Yongji , ZHANG Hengxu , SHI Xiaohan , et al. Preliminary study on participation mechanism of large-scale distributed energy resource in security and stability control of large power grid[J]. Automation of Electric Power System, 2021, 45 (18): 1- 8.
2 MAI T , HAND M M , BALDWIN S F , et al. Renewable electricity futures for the United States[J]. IEEE Transactions on Sustainable Energy, 2014, 5 (2): 372- 378.
doi: 10.1109/TSTE.2013.2290472
3 王飞, 宋士瞻, 曹永吉, 等. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报(工学版), 2018, 48 (5): 124- 130.
WANG Fei , SONG Shizhan , CAO Yongji , et al. Multi-scale assessment of wind-solar generation resources based on continuous wavelet transform[J]. Journal of Shandong University(Engineering Science), 2018, 48 (5): 124- 130.
4 国家能源局. 关于2021年风电、光伏发电开发建设有关事项的通知[EB/OL]. (2018-02-01)[2021-12-21]. http://zfxxgk.nea.gov.cn/2021-05/11/c_139958210.htm.
National Energy Administration. Notice on matters related to the development and construction of wind power and photovoltaic power generation in 2021[EB/OL]. (2018-02-01)[2021-12-21]. http://zfxxgk.nea.gov.cn/2021-05/11/c_139958210.htm.
5 谢小荣, 贺静波, 毛航银, 等. "双高"电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41 (2): 461- 475.
XIE Xiaorong , HE Jingbo , MAO Hangyin , et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Procee-dings of the CSEE, 2021, 41 (2): 461- 475.
6 张恒旭, 曹永吉, 张怡, 等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51 (5): 42- 52.
ZHANG Hengxu , CAO Yongji , ZHANG Yi , et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51 (5): 42- 52.
7 GUO Jinrui , CHEN Tong , CHAUDHURI B , et al. Stability of isolated microgrids with renewable generation and smart loads[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2845- 2854.
doi: 10.1109/TSTE.2020.2980276
8 LIANG Xiaodong . Emerging power quality challenges due to integration of renewable energy sources[J]. IEEE Transactions on Industry Applications, 2017, 53 (2): 855- 866.
doi: 10.1109/TIA.2016.2626253
9 鲁宗相, 汤海雁, 乔颖, 等. 电力电子接口对电力系统频率控制的影响综述[J]. 中国电力, 2018, 51 (1): 51- 58.
LU Zongxiang , TANG Haiyan , QIAO Ying , et al. The impact of power electronics interfaces on power system frequency control: a review[J]. Electric Power, 2018, 51 (1): 51- 58.
10 秦晓辉, 苏丽宁, 迟永宁, 等. 大电网中虚拟同步发电机惯量支撑与一次调频功能定位辨析[J]. 电力系统自动化, 2018, 42 (9): 36- 43.
QIN Xiaohui , SU Lining , CHI Yongning , et al. Functional orientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of Electric Power Systems, 2018, 42 (9): 36- 43.
11 孙华东, 王宝财, 李文锋, 等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40 (16): 5179- 5192.
SUN Huadong , WANG Baocai , LI Wenfeng , et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40 (16): 5179- 5192.
12 WU Ziping , GAO Wenzhong , GAO Tianqi , et al. State-of-the-art review on frequency response of wind power plants in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (1): 1- 16.
doi: 10.1007/s40565-017-0315-y
13 汤涌, 孙华东, 易俊, 等. 两大区互联系统交流联络线功率波动机制与峰值计算[J]. 中国电机工程学报, 2010, 30 (19): 1- 6.
TANG Yong , SUN Huadong , YI Jun , et al. AC tie-line power fluctuation mechanism and peak value calculation for two-area interconnected power systems[J]. Proceedings of the CSEE, 2010, 30 (19): 1- 6.
14 KUNDUR P. Power system stability and control[M]. New York, USA: McGraw-Hill, 1994.
15 王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003.
16 EKANAYAKE J , JENKINS N . Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19 (4): 800- 802.
doi: 10.1109/TEC.2004.827712
17 王玎, 袁小明. 异步电机机电时间尺度有效惯量评估及其对可再生能源并网系统频率动态的影响[J]. 中国电机工程学报, 2018, 38 (24): 7258- 7266.
WANG Ding , YUAN Xiaoming . Available inertia estimation of induction machine in electromechanical timescale and its effects on frequency dynamics of power systems with renewable energy[J]. Proceedings of the CSEE, 2018, 38 (24): 7258- 7266.
18 XIONG Liansong , ZHUO Fang , WANG Feng , et al. Static synchronous generator model: a new perspective to investigate dynamic characteristics and stability issues of grid-tied PWM inverter[J]. IEEE Transactions on Power Electronics, 2016, 31 (9): 6264- 6280.
doi: 10.1109/TPEL.2015.2498933
19 XIONG Liansong , LIU Xiaokang , ZHANG Donghui , et al. Rapid power compensation-based frequency response strategy for low-inertia power systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (4): 4500- 4513.
doi: 10.1109/JESTPE.2020.3032063
20 曾繁宏, 张俊勃. 电力系统惯性的时空特性及分析方法[J]. 中国电机工程学报, 2020, 40 (1): 50- 58.
ZENG Fanhong , ZHANG Junbo . Temporal and spatial characteristics of power system inertia and its analysis method[J]. Proceedings of the CSEE, 2020, 40 (1): 50- 58.
21 INOUE T , TANIGUCHI H , IKEGUCHI Y , et al. Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 136- 143.
doi: 10.1109/59.574933
22 MORREN J , DE HAAN S W H , KLING W L , et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21 (1): 433- 434.
doi: 10.1109/TPWRS.2005.861956
23 ASHOURI-ZADEH A , TOULABI M . Adaptive virtual inertia controller for DFIGs considering nonlinear aerodynamic efficiency[J]. IEEE Transactions on Sustain-able Energy, 2021, 12 (2): 1060- 1067.
doi: 10.1109/TSTE.2020.3032478
24 PENG Xiaotao , YAO Wei , YAN Cai , et al. Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs[J]. IEEE Transactions on Power Systems, 2020, 35 (2): 962- 974.
doi: 10.1109/TPWRS.2019.2943520
25 孙铭, 徐飞, 陈磊, 等. 利用转子动能的风机辅助频率控制最优策略[J]. 中国电机工程学报, 2021, 41 (2): 506- 514.
SUN Ming , XU Fei , CHEN Lei , et al. Optimal auxiliary frequency control strategy of wind turbine generator utilizing rotor kinetic energy[J]. Proceedings of the CSEE, 2021, 41 (2): 506- 514.
26 丁磊, 尹善耀, 王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39 (9): 2385- 2391.
DING Lei , YIN Shanyao , WANG Tongxiao , et al. Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39 (9): 2385- 2391.
27 张昭遂, 孙元章, 李国杰, 等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35 (17): 20- 25.
ZHANG Zhaosui , SUN Yuanzhang , LI Guojie , et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power System, 2011, 35 (17): 20- 25.
28 TANG Xuesong , YIN Minghui , SHEN Chun , et al. Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation[J]. IEEE Transactions on Sustainable Energy, 2019, 10 (2): 822- 832.
doi: 10.1109/TSTE.2018.2848923
29 马欢, 杨冬, 高志民, 等. 基于改进虚拟惯量法的双馈风机频率综合控制策略[J]. 山东大学学报(工学版), 2022, 52 (5): 102- 110.
MA Huan , YANG Dong , GAO Zhimin , et al. Integrated frequency control strategy of DFIGs based on improved virtual inertia method[J]. Journal of Shandong University (Engineering Science), 2022, 52 (5): 102- 110.
30 KNAP V , CHAUDHARY S K , STROE D-I , et al. Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3447- 3456.
31 颜湘武, 崔森, 宋子君, 等. 基于超级电容储能控制的双馈风电机组惯量与一次调频策略[J]. 电力系统自动化, 2020, 44 (14): 111- 120.
YAN Xiangwu , CUI Sen , SONG Zijun , et al. Inertia and primary frequency regulation strategy of doubly-fed wind turbine based on super capacitor energy storage control[J]. Automation of Electric Power Systems, 2020, 44 (14): 111- 120.
32 刘巨, 姚伟, 文劲宇, 等. 一种基于储能技术的风电场虚拟惯量补偿策略[J]. 中国电机工程学报, 2015, 35 (7): 1596- 1605.
LIU Ju , YAO Wei , WEN Jinyu , et al. A wind farm virtual inertia compensation strategy based on energy storage system[J]. Proceedings of the CSEE, 2015, 35 (7): 1596- 1605.
33 XIONG Linyun , YANG Shaobo , HUANG Sunhua , et al. Optimal allocation of energy storage system in DFIG wind farms for frequency support considering wake effect[J]. IEEE Transactions on Power Systems, 2022, 37 (3): 2097- 2112.
34 AZIZIPANAH-ABARGHOOEE R , MALEKPOUR M , DRAGIČEVIĆ T , et al. A linear inertial response emulation for variable speed wind turbines[J]. IEEE Transactions on Power Systems, 2020, 35 (2): 1198- 1208.
35 边晓燕, 姜莹, 赵耀, 等. 高渗透率可再生能源微电网的风柴荷协调调频策略[J]. 电力系统自动化, 2018, 42 (15): 102- 109.
BIAN Xiaoyan , JIANG Ying , ZHAO Yao , et al. Coordinated frequency regulation strategy of wind, diesel and load for microgrid with high-penetration renewable energy[J]. Automation of Electric Power System, 2018, 42 (15): 102- 109.
36 ZHANG Xing , GAO Qian , HU Yuhua , et al. Active power reserve photovoltaic virtual synchronization control technology[J]. Chinese Journal of Electrical Engineering, 2020, 6 (2): 1- 6.
37 DEHGHANITAFTI H , KONSTANTINOU G , FLETCHER J , et al. Control of distributed photovoltaic inverters for frequency support and system recovery[J]. IEEE Transactions on Power Electronics, 2022, 37 (4): 4742- 4750.
38 钟诚, 周顺康, 严干贵, 等. 基于变减载率的光伏发电参与电网调频控制策略[J]. 电工技术学报, 2019, 34 (5): 1013- 1024.
ZHONG Cheng , ZHOU Shunkang , YAN Gangui , et al. A new frequency regulation control strategy for photovoltaic power plant based on variable power reserve level control[J]. Transaction of China Electrotechnical Society, 2019, 34 (5): 1013- 1024.
39 王利猛, 韩凯, 孙珮然, 等. 基于功率储备的光伏发电系统调频技术研究[J]. 东北电力大学学报, 2020, 40 (6): 36- 44.
WANG Limeng , HAN Kai , SUN Peiran , et al. Research on frequency modulation technology of photovoltaic system based on power reserve[J]. Journal of Northeast Electric Power University, 2020, 40 (6): 36- 44.
40 BAŠKARAD T , KUZLE I , HOLJEVAC N . Photovoltaic system power reserve determination using parabolic approximation of frequency response[J]. IEEE Transactions on Smart Grid, 2021, 12 (4): 3175- 3184.
41 FANG Jingyang , LI Hongchang , TANG Yi , et al. On the inertia of future more-electronics power systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7 (4): 2130- 2146.
42 FANG Jingyang , LI Hongchang , TANG Yi , et al. Distributed power system virtual inertia implemented by grid-connected power converters[J]. IEEE Transactions on Power Electronics, 2018, 33 (10): 8488- 8499.
43 杨慧彪, 贾祺, 项丽, 等. 双级式光伏发电虚拟惯量控制策略[J]. 电力系统自动化, 2019, 43 (10): 87- 94.
YANG Huibiao , JIA Qi , XIANG Li , et al. Virtual inertia control strategies for double-stage photovoltaic power generation[J]. Automation of Electric Power Systems, 2019, 43 (10): 87- 94.
44 王素娥, 吴永斌, 熊连松, 等. 光伏并网发电系统的虚拟惯量控制策略[J]. 高电压技术, 2020, 46 (11): 3743- 3751.
WANG Sue , WU Yongbin , XIONG Liansong , et al. Virtual inertia control strategy for grid-tied photovoltaic power generation system[J]. High Voltage Engineering, 2020, 46 (11): 3743- 3751.
45 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39 (23): 15- 25.
LI Jianlin , TIAN Liting , LAI Xiaokang . Outlook of electrical energy storage technologies under energy internet background[J]. Automation of Electric Power System, 2015, 39 (23): 15- 25.
46 DATTA U , KALAM A , SHI Juan . Battery energy storage system control for mitigating PV penetration impact on primary frequency control and state-of-charge recovery[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (2): 746- 757.
47 王振雄, 易皓, 卓放, 等. 应用于光伏微网的一种虚拟同步发电机结构及其动态性能分析[J]. 中国电机工程学报, 2017, 37 (2): 444- 454.
WANG Zhenxiong , YI Hao , ZHUO Fang , et al. A hardware structure of virtual synchronous generator in photovoltaic microgrid and its dynamic performance analysis[J]. Proceedings of the CSEE, 2017, 37 (2): 444- 454.
48 张祥宇, 杨黎, 朱晓荣, 等. 光储发电系统的虚拟转动惯量控制[J]. 电力自动化设备, 2017, 37 (9): 109- 115.
ZHANG Xiangyu , YANG Li , ZHU Xiaorong , et al. Virtual rotational inertia control of PV generation system with energy storage devices[J]. Electric Power Automation Equipment, 2017, 37 (9): 109- 115.
49 陈文倩, 辛小南, 程志平. 基于虚拟同步发电机的光储并网发电控制技术[J]. 电工技术学报, 2018, 33 (增刊2): 538- 545.
CHEN Wenqian , XIN Xiaonan , CHENG Zhiping . Control of grid-connected of photovoltaic system with storage based on virtual synchronous generator[J]. Transaction of China Electrotechnical Society, 2018, 33 (Supp.2): 538- 545.
50 KIM J , MULJADI E , GEVORGIAN V , et al. Dynamic capabilities of an energy storage-embedded DFIG system[J]. IEEE Transactions on Industry Applications, 2019, 55 (4): 4124- 4134.
51 JUNYENT-FERR A , PIPELZADEH Y , GREEN T C . Blending HVDC-link energy storage and offshore wind turbine inertia for fast frequency response[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (3): 1059- 1066.
52 QUAN Xiangjun , YU Ruiyang , ZHAO Xin , et al. Photovoltaic synchronous generator: architecture and control strategy for a grid-forming PV energy system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (2): 936- 948.
53 KNAP V , CHAUDHARY S K , STROE D-I , et al. Sizing of an energy storage system for grid inertial response and primary frequency reserve[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3447- 3456.
54 张波, 张晓磊, 贾焦心, 等. 基于惯量支撑和一次调频需求的VSG储能单元配置方法[J]. 电力系统自动化, 2019, 43 (23): 202- 209.
ZHANG Bo , ZHANG Xiaolei , JIA Jiaoxin , et al. Configuration method for energy storage unit of virtual synchronous generator based on requirements of inertia requirements of inertia support and primary frequency regulation[J]. Automation of Electric Power Systems, 2019, 43 (23): 202- 209.
55 张武其, 文云峰, 迟方德, 等. 电力系统惯量评估研究框架与展望[J]. 中国电机工程学报, 2021, 41 (20): 6842- 6856.
ZHANG Wuqi , WEN Yunfeng , CHI Fangde , et al. Research framework and prospect on power system inertia estimation[J]. Proceedings of the CSEE, 2021, 41 (20): 6842- 6856.
56 王博, 杨德友, 蔡国伟. 高比例新能源接入下电力系统惯量相关问题研究综述[J]. 电网技术, 2020, 44 (8): 2998- 3007.
WANG Bo , YANG Deyou , CAI Guowei . Review of research on power system inertia related issues in the context of high penetration of renewable power generation[J]. Power System Technology, 2020, 44 (8): 2998- 3007.
57 AZIZIPANAH-ABARGHOOEE R , MALEKPOUR M , PAOLONE M , et al. A new approach to the online estimation of the loss of generation size in power systems[J]. IEEE Transactions on Power Systems, 2019, 34 (3): 2103- 2113.
58 SHAMIRZAEE M, AYOUBZADEH H, FAROKHZAD D, et al. An improved method for estimation of inertia constant of power system based on polynomial approximation[C]//Smart Grid Conference (SGC). Tehran, Iran: IEEE, 2014: 1-7.
59 ASHTON P M , SAUNDERS C S , TAYLOR G A , et al. Inertia estimation of the GB power system using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 701- 709.
60 CAI Guowei , WANG Bo , YANG Deyou , et al. Inertia estimation based on observed electromechanical oscil-lation response for power systems[J]. IEEE Transactions on Power Systems, 2019, 34 (6): 4291- 4299.
61 ZHANG Junbo , XU Hanchen . Online identification of power system equivalent inertia constant[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8098- 8107.
62 李东东, 张佳乐, 徐波, 等. 考虑频率分布特性的新能源电力系统等效惯量评估[J]. 电网技术, 2020, 44 (8): 2913- 2921.
LI Dongdong , ZHANG Jiale , XU Bo , et al. Equivalent inertia assessment in renewable power system considering frequency distribution properties[J]. Power System Technology, 2020, 44 (8): 2913- 2921.
63 LIU Muyang , CHEN Junru , FEDERICO M . On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36 (3): 2693- 2701.
64 CHEN Pengwei , QI Chenchen , CHEN Xin . Virtual inertia estimation method of DFIG-based wind farm with additional frequency control[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9 (5): 1076- 1087.
65 PHURAILATPAM C , RATHER Z H , BAHRANI B , et al. Estimation of non-synchronous inertia in AC micro-grids[J]. IEEE Transactions on Sustainable Energy, 2021, 12 (4): 1903- 1914.
66 刘方蕾, 胥国毅, 王凡, 等. 基于差值计算法的系统分区惯量评估方法[J]. 电力系统自动化, 2020, 44 (20): 46- 53.
LIU Fanglei , XU Guoyi , WANG Fan , et al. Assessment method of system partition inertia based on differential calculation method[J]. Automation of Electric Power Systems, 2020, 44 (20): 46- 53.
67 TUTTELBERG K , KILTER J , WILSON D , et al. Estimation of power system inertia from ambient wide area measurements[J]. IEEE Transactions on Power Syst-ems, 2018, 33 (6): 7249- 7257.
68 李世春, 夏智雄, 程绪长, 等. 基于类噪声扰动的电网惯量常态化连续估计方法[J]. 中国电机工程学报, 2020, 40 (14): 4430- 4439.
LI Shichun , XIA Zhixiong , CHENG Xuchang , et al. Continuous estimation method of power system inertia based on ambient disturbance[J]. Proceedings of the CSEE, 2020, 40 (14): 4430- 4439.
69 ZENG Fanhong , ZHANG Junbo , CHEN Ge , et al. Online estimation of power system inertia constant under normal operating conditions[J]. IEEE Access, 2020, 8, 101426- 101436.
70 CAO Xue , STEPHEN Bruce , ABDULHADI Ibrahim , et al. Switching Markov Gaussian models for dynamic power system inertia estimation[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3394- 3403.
71 ALLELLA F , CHIODO E , GIANNUZZI G M , et al. On-line estimation assessment of power systems inertia with high penetration of renewable generation[J]. IEEE Access, 2020, 8, 62689- 62697.
[1] Hengxu ZHANG,Yongji CAO,Yi ZHANG,Changgang LI,Jiacheng RUAN,VLADIMIR Terzija. Review of frequency dynamic behavior evolution and analysis method requirements of power system [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52.
[2] Dexin LI,Chonglin ZONG,Jiarui WANG,Haifeng ZHANG,Chang LIU,Dawei HUANG. Day-ahead optimal scheduling considering the constraints of UHVDC transmission and wheeling contracts [J]. Journal of Shandong University(Engineering Science), 2021, 51(1): 69-75, 86.
[3] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. Wind and PV installed capacity optimization with hybrid uncertainty of renewable energy [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 101-108.
[4] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. PV installed capacity planning for power distribution network based on time series production simulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 131-136.
[5] ZHANG Hengxu, SHI Xiaohan, LIU Yutian, YANG Dong. Support of the renewable energy base in northwest of China on the construction of global energy interconnection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 96-102.
[6] GAO Hou-Lei, TIAN Jia, DU Jiang, WU Zhi-Gang, LIU Chu-Min. Distributed generation—new technology in energy development [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .