Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (4): 139-150.doi: 10.6040/j.issn.1672-3961.0.2022.046

• Civil Engineering—New Materials & Structures • Previous Articles     Next Articles

Research and optimization of hollow form of precast concrete pavement slab

Xuhao WANG1(),Qianqian LIU1,Hucheng LI2,cheng LI1,Peng LI1,Yifeng LING3,*()   

  1. 1. School of Highway, Chang′an University, Xi′an 710064, Shaanxi, China
    2. China Railway First Survey and Design Institute Group Co., Ltd., Xi′an 710043, Shaanxi, China
    3. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Received:2022-01-24 Online:2022-08-20 Published:2022-08-24
  • Contact: Yifeng LING E-mail:wangxh@chd.edu.cn;yfling@sdu.edu.cn

Abstract:

In order to reduce the self-weight of precast concrete pavement slab, the concrete hollow slab was studied by using ABAQUS, the optimal length, width and thickness and circular hollow type of precast concrete solid slab were recommended. The local sizes of the circular section were optimized, and the influences of the radius, numbers and height of circle on the maximum flexural-stress, the maximum vertical displacement, the maximum compressive stress and shear stress of the slab were analyzed. Entropy weight method and technique for order preference by similarity to an ideal solution method were introduced to optimize multiple parameters, and the optimal hollow combination was obtained as 10 circles with a radius of 60 mm and a center height of 160 mm. By comparing the mechanical performance of hollow slab with solid slab, it was found that the difference was marginal, while optimized hollow slab could lead to a 970 kg self-weight reduction. The precast concrete hollow slab, the circular hollow type and its local size were proposed and recommended.

Key words: precast concrete pavement, hollow form, optimization of local size, finite element simulation, mechanical response

CLC Number: 

  • U416

Table 1

Material design parameters of each structural layer of pavement"

类型 长/m 宽/m 厚度/m 弹性模量/MPa 泊松比
水泥面层 25 000 0.15
柔性基层 12 4.5 0.3 500 0.25
路基 12 4.5 3.0 30 0.40

Fig.1

Structural model of precast concrete pavement"

Fig.2

Standard axle load diagram"

Fig.3

The load is applied to slab center, slab edge and slab angle respectively"

Table 2

Orthogonal test scheme for dimensional structure optimization  m"

试验号 长度 宽度 厚度
1 4.0 3.0 0.22
2 4.0 3.5 0.24
3 4.0 4.0 0.26
4 4.0 4.5 0.28
5 4.5 3.0 0.24
6 4.5 3.5 0.22
7 4.5 4.0 0.28
8 4.5 4.5 0.26
9 5.0 3.0 0.26
10 5.0 3.5 0.28
11 5.0 4.0 0.22
12 5.0 4.5 0.24
13 6.0 3.0 0.28
14 6.0 3.5 0.26
15 6.0 4.0 0.24
16 6.0 4.5 0.22

Table 3

Mechanical responses ofslabs with different sizes under different loading positions"

试验号 板底最大弯拉应力/MPa 板块最大竖向位移/mm
板中受力 板边受力 板角受力 板中受力 板边受力 板角受力
1 0.618 7 0.665 5 0.691 7 0.324 5 0.422 0 0.526 3
2 0.591 0 0.598 2 0.641 7 0.307 6 0.411 4 0.503 7
3 0.608 4 0.686 4 0.651 4 0.283 3 0.403 4 0.484 2
4 0.551 7 0.638 5 0.578 5 0.271 0 0.411 3 0.483 5
5 0.548 2 0.618 4 0.607 0 0.302 1 0.386 4 0.491 4
6 0.679 3 0.638 0 0.748 0 0.327 6 0.425 6 0.532 9
7 0.544 1 0.639 9 0.582 5 0.267 3 0.367 0 0.452 7
8 0.641 3 0.687 5 0.676 6 0.289 0 0.420 9 0.506 6
9 0.557 7 0.709 9 0.609 6 0.270 8 0.343 5 0.451 5
10 0.524 0 0.648 2 0.572 4 0.251 1 0.337 1 0.432 2
11 0.710 3 0.632 8 0.775 7 0.336 1 0.443 7 0.554 9
12 0.647 9 0.588 0 0.687 6 0.322 0 0.448 6 0.553 4
13 0.498 1 0.662 9 0.541 8 0.250 0 0.311 5 0.420 6
14 0.599 3 0.699 8 0.659 3 0.266 1 0.343 6 0.451 5
15 0.627 2 0.602 2 0.682 6 0.308 8 0.405 5 0.512 5
16 0.735 3 0.641 1 0.788 6 0.350 7 0.479 8 0.592 6

Fig.4

The influence of length, width and thickness on the maximum vertical displacement of slab"

Fig.5

The influence of length, width and thickness on the maximum flexural-tensile stress of slab bottom"

Table 4

Four hollow forms and dimensions"

形状 空心图示 尺寸图示
六角形
工字形
圆形
半圆形

Fig.6

Flexural tensile stress of the hexagonal hollow slab when load is applied to different positions"

Fig.7

Flexural tensile stress of the I-shaped hollow slab when load is applied to different positions"

Fig.8

Flexural tensile stress of the semicircle hollow slab when load is applied to different positions"

Fig.9

Flexural tensile stress of the circular Hollow slab when load is applied todifferent positions"

Table 5

Maximum of mechanical response under four hollow forms"

空心形式 最大弯拉应力/MPa 最大竖向位移/mm 最大压应力/MPa
六角形 2.99 0.20 1.99
工字形 4.90 0.22 3.31
半圆形 2.50 0.20 1.70
圆形 2.36 0.19 1.45

Table 6

Design of local dimension test scheme for circular hollow form"

水平 圆心高度/mm 圆形半径/mm 圆形个数
1 120 60 10
2 130 70 11
3 140 80 12
4 150 90 13
5 160 100 14

Table 7

The values of mechanical response index of different local dimensions of circular hollow form"

试验编号 半径/mm 圆形个数 圆心高度/mm 薄壁处最大压应力/MPa 板底最大弯拉应力/MPa 薄壁处最大剪应力/MPa 最大竖向位移/mm
1 60 10 120 0.93 1.82 0.35 0.178
2 60 11 130 0.99 1.77 0.47 0.179
3 60 12 140 1.07 1.71 0.60 0.179
4 60 13 150 1.15 1.65 0.73 0.179
5 60 14 160 1.13 1.50 0.87 0.181
6 70 10 130 0.90 1.79 0.53 0.182
7 70 11 140 0.99 1.74 0.66 0.182
8 70 12 150 1.09 1.69 0.81 0.183
9 70 13 160 1.15 1.64 0.93 0.183
10 70 14 120 0.85 2.31 0.66 0.186
11 80 10 140 0.88 1.79 0.72 0.186
12 80 11 150 0.97 1.74 0.85 0.184
13 80 12 160 1.06 1.70 0.96 0.183
14 80 13 120 0.77 2.37 0.68 0.186
15 80 14 130 0.85 2.21 0.71 0.186
16 90 10 150 0.86 1.75 0.93 0.190
17 90 11 160 0.94 1.70 1.05 0.191
18 90 12 120 0.64 2.42 0.79 0.194
19 90 13 130 0.72 2.35 0.92 0.195
20 90 14 140 0.79 2.29 1.05 0.194
21 100 10 160 0.84 1.71 1.12 0.194
22 100 11 120 0.53 2.39 0.85 0.201
23 100 12 130 0.63 2.34 0.98 0.201
24 100 13 140 0.71 2.30 1.14 0.199
25 100 14 150 0.78 2.25 1.27 0.202

Table 8

The mean values of mechanical response indexes under different radius, numbers, height of the circle"

水平 板底最大弯拉应力/MPa 最大竖向位移/mm 薄壁处最大压应力/MPa 薄壁处最大剪应力/MPa
圆形半径 圆形个数 圆心高度 圆形半径 圆形个数 圆心高度 圆形半径 圆形个数 圆心高度 圆形半径 圆形个数 圆心高度
1 1.690 1.722 2.262 0.179 0.186 0.189 1.054 0.882 0.744 0.604 0.730 0.666
2 1.834 1.868 2.092 0.183 0.187 0.189 0.996 0.884 0.818 0.718 0.776 0.722
3 1.962 1.972 1.966 0.185 0.188 0.188 0.906 0.898 0.888 0.784 0.828 0.834
4 2.102 2.062 1.816 0.193 0.188 0.188 0.790 0.900 0.970 0.948 0.880 0.918
5 2.198 2.112 1.650 0.199 0.190 0.186 0.698 0.880 1.024 1.072 0.912 0.986
极差 0.508 0.340 0.612 0.020 0.004 0.003 0.356 0.020 0.280 0.468 0.182 0.320

Fig.10

The maximum stress of the slab under different radius, numbers, center height of the circle"

Fig.11

The maximum vertical displacement of the slab under different radius, numbers, center height of the circle"

Fig.12

Comparison of flexural-tensile stress between hollow slab and solid slab"

Fig.13

Comparison of vertical displacement between hollow slab and solid slab"

Fig.14

Lap method of the slab"

Table 9

Calculation results of the slab using trapezoidal lapping way"

力学响应位置 最大主应力/MPa 剪应力/MPa 最大竖向位移/mm
受荷板一侧 1.179 0.200 0.516
未受荷板一侧 1.089 0.122 0.510

Fig.15

Vertical displacement response diagram of adjacent plates in trapezoidal lap way"

1 王昊, 李鹏程, 毛洪录, 等. 水泥混凝土路面早期裂缝影响因素分析[J]. 山东大学学报(工学版), 2012, 42 (5): 108- 112.
WANG Hao , LI Pengcheng , MAO Honglu , et al. Analysis on influence factors of the early-age cracking of concrete pavement[J]. Journal of Shandong University(Engineering Science), 2012, 42 (5): 108- 112.
2 SYED A , SONPAROTE R . A review of precast concrete pavenment technology[J]. Baltic Journal of Road and Bridge Engineering, 2020, 15 (4): 22- 53.
doi: 10.7250/bjrbe.2020-15.493
3 SMITH P. Manual for jointed precast concrete pavement[R]. Carmel, USA: National Precast Concrete Association, 2019.
4 TAYABJI S. Precast concrete pavement current practices-2019[C]//International Conference on Airfield and Highway Pavements, Chicago, USA, 2019: 365-376.
5 TOMEK R . Advantages of precast concrete in highway infrastructure construction[J]. Procedia Engineering, 2017, 196, 176- 180.
doi: 10.1016/j.proeng.2017.07.188
6 SYED A , SONPAROTE R S . Development and early-age performance of an innovative prestressed precast concrete pavement[J]. Journal of Construction Engineering and Management, 2020, 146 (2): 05019018.
doi: 10.1061/(ASCE)CO.1943-7862.0001741
7 赵兰若, 赵鸿铎, 蔡爵威, 等. 考虑邻板高程差的装配式水泥路面行驶舒适性研究[J]. 公路交通科技, 2021, 38 (3): 14- 22.
doi: 10.3969/j.issn.1002-0268.2021.03.003
ZHAO Lanruo , ZHAO Hongduo , CAI Juewei , et al. Study on driving comfort of precast concrete pavement considering joint faulting[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (3): 14- 22.
doi: 10.3969/j.issn.1002-0268.2021.03.003
8 于华洋, 马涛, 王大为, 等. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33 (10): 1- 66.
doi: 10.3969/j.issn.1001-7372.2020.10.001
YU Huayang , MA Tao , WANG Dawei , et al. Review on China's pavement engineering research· 2020[J]. China Journal of Highway and Transport, 2020, 33 (10): 1- 66.
doi: 10.3969/j.issn.1001-7372.2020.10.001
9 VAITKUS A , GRAZULYTE J , KLEIZIENE R , et al. Concrete modular pavements-types, issues and challenges[J]. The Baltic Journal of Road and Bridge Engineering, 2019, 14 (1): 80- 103.
doi: 10.7250/bjrbe.2019-14.434
10 MADHKHAN M , ENTEZAM M , TORKI M J S I . Mechanical properties of precast reinforced concrete slab tracks on non-ballasted foundations[J]. Scientia Iranica, 2012, 19 (1): 20- 26.
doi: 10.1016/j.scient.2011.11.037
11 尹德清. 水泥混凝土空心路面应用研究与施工工艺[J]. 国外公路, 1999, (6): 16- 20.
YIN Deqing . Application research and construction technology of cement concrete hollow pavement[J]. Journal of Foreign Highway, 1999, (6): 16- 20.
12 查旭东, 王子威, 胡恒武, 等. 导光混凝土太阳能路面空心板块模拟与制备[J]. 长安大学学报(自然科学版), 2020, 40 (1): 87- 96.
ZHA Xudong , WANG Ziwei , HU Hengwu , et al. Simulation and preparation for hollow slab of solar pavement with light guide concrete[J]. Journal of Chang'an University(Natural Science Edition), 2020, 40 (1): 87- 96.
13 廖公云, 黄晓明. Abaqus有限元软件在道路工程中的运用[M]. 南京: 东南大学出版社, 2014: 283.
14 韩宇聪, 武科, 邢志豪, 等. 地铁车站大体积混凝土结构温度效应[J]. 山东大学学报(工学版), 2021, 51 (6): 93- 102.
HAN Yucong , WU Ke , XING Zhihao , et al. Temperature effect of mass concrete structure in subway station[J]. Journal of Shandong University(Engineering Science), 2021, 51 (6): 93- 102.
15 中国人民共和国交通运输部. 公路水泥混凝土路面设计规范: JTG D40—2011[S]. 北京: 人民交通出版社, 2011.
16 SADEGHI V , HESAMI S . Finite element investigation of the joints in precast concrete pavement[J]. Computers and Concrete, 2018, 21 (5): 547- 557.
17 谢年喜. 装配式水泥混凝土路面板底脱空损坏的力学响应分析[D]. 武汉: 湖北工业大学, 2019.
XIE Nianxi. Mechanical response analysis of voids beneath concrete slabs precast concrete pavement[D]. Wuhan: Hubei University of Technology, 2019.
18 李娣. 预制混凝土板快速修复水泥路面结构设计研究[D]. 南京: 东南大学, 2015.
LI Di. Study on concrete pavement structural design method of quick repair with precast concrete slab[D]. Nanjing: Southeast University, 2015.
19 陈雷, 王延章. 基于熵权系数与TOPSIS集成评价决策方法的研究[J]. 控制与决策, 2003, (4): 456- 459.
CHEN Lei , WANG Yanzhang . Research on TOPSIS integrated evaluation and decision method based on entropy coefficient[J]. Control and Decision, 2003, (4): 456- 459.
20 何鑫, 朱宏泉, 高成凤. 基于熵权法与TOPSIS法的房地产项目投资风险评价[J]. 商业研究, 2009, (3): 105- 108.
HE Xin , ZHU Hongquan , GAO Chengfeng . Risk evaluation of real estate project based on entropy weight model and TOPSIS method[J]. Commercial Rasearch, 2009, (3): 105- 108.
21 GOPALARTNAM V. Performance evaluation of precast prestressed concrete pavement[R]. Missouri, USA: Dept. of Transportation, 2007.
22 罗勇, 袁捷. 三维有限元法对水泥混凝土道面接缝传荷作用的模拟方法研究[J]. 公路交通科技, 2013, 30 (3): 32- 38.
LUO Yong , YUAN Jie . Research on simulation method for load transfer of joints of cement concrete pavement by 3D finite element method[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (3): 32- 38.
[1] JI Yuebo, WU Wangxian. A method of reducing the slip in radial direction of the traveling wave type rotary ultrasonic motor [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 112-116.
[2] TAO Tie-Yong, TIAN Teng-Hui. Study of the mechanical response of semi-rigid pavement structure under-different tire pressure distributions [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(6): 105-110.
[3] WANG Hui,GAO Lin,ZHAO Ming-qi . A new method to predict the forming limit of sheet metal based on finite element simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 95-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[8] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[9] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[10] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .