Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (5): 100-106.doi: 10.6040/j.issn.1672-3961.0.2020.443

Previous Articles     Next Articles

Horizontal bearing capacity of suction bucket foundation under wave dynamic load

Haotian LUO(),Ke WU*(),Yameng LI,Jiaxiang XU,Zhihao XING   

  1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-11-02 Online:2021-10-20 Published:2021-09-29
  • Contact: Ke WU E-mail:luohaotian@mail.sdu.edu.cn;wuke@sdu.edu.cn

Abstract:

For the horizontal ultimate bearing capacity of the suction bucket foundation under horizontal dynamic loads such as waves and wind, the explicit dynamic method was adopted to establish the mechanical model of the suction bucket foundation under the wave dynamic load. Based on the infinite boundary and Rayleigh damping, the model optimization analysis was carried out, and the comparative study of the ultimate bearing performance of the foundation under static load and dynamic load (action time 0.5, 1, 2, 5 s) under the same horizontal displacement conditions was carried out. The research results showed that the horizontal ultimate bearing capacity curve of the bucket foundation under different dynamic load time decreased with the increase of the loading time compared with the static load, and gradually approached the static load bearing capacity curve. Affected by the damping of the rock and soil media on the seabed, the rotation center of the barrel under the horizontal load moved up to the top of the barrel as the time of the dynamic load decreased.

Key words: bucket foundation, dynamic load, horizontal bearing capacity, numerical calculation, loading time

CLC Number: 

  • TU470.3

Fig.1

Soil and bucket model"

Fig.2

Figure of infinite unit vertex coding"

Fig.3

Soil network model with infinite boundaries"

Fig.4

Rayleigh damping curve"

Table 1

Dynamic characteristics of bucket"

振型 频率/Hz 圆频率ω 振动描述
1 8.264 51.895 桶顶上下振动
2 26.827 168.474 桶壁水平振动
3 26.830 168.492 桶壁水平振动
4 48.311 303.393 桶壁对边振动
5 51.873 325.762 桶壁对边振动
6 57.040 358.211 桶壁三边振动
7 58.514 367.468 桶壁三边振动
8 67.786 425.696 桶壁扭转
9 76.435 480.012 桶壁四边振动
10 76.921 483.064 桶壁四边振动

Table 2

Dynamic characteristics of foundation"

振型 频率/Hz 圆频率ω 振动描述
1、2、3、4、5、6 0 0 土体与无限边界旋转
7、8 0.142 0.894 桶内土体水平振动
9 0.289 1.818 无限边界上下振动
10、11 0.300 1.889 土体底部对边振动
12 0.308 1.932 土体底边四边振动
13 0.308 1.933 土体底部上下振动
14 0.313 1.966 土体底部四边振动
15、16 0.320 2.009 土体顶部对边振动
17 0.326 2.050 土体底部中心上下振动

Fig.5

Horizontal bearing capacity-displacement curve"

Fig.6

Changes in earth pressure"

Fig.7

Displacement vector diagram"

Fig.8

Changes in the center of rotation at different times"

Fig.9

Time-dynamic level ultimate bearing capacity coefficient diagram"

1 MEHRAVAR Moura , HARIRECHE Ouahid , FARAMARZI Asaad . Evaluation of undrained failure envelopes of caisson foundations under combined loading[J]. Applied Ocean Research, 2016, 59 (6): 129- 137.
2 施晓春, 徐日庆, 龚晓南, 等. 桶形基础单桶水平承载力的试验研究[J]. 岩土工程学报, 1999, (6): 3- 5.
SHI Xiaochun , XU Riqing , GONG Xiaonan , et al. Experimental study on horizontal bearing capacity of single bucket foundation[J]. Chinese Journal of Geotechnical Engineering, 1999, (6): 3- 5.
3 范庆来, 栾茂田, 杨庆. 横观各向同性软基上深埋式大圆筒结构水平承载力分析[J]. 岩石力学与工程学报, 2007, (1): 94- 101.
FAN Qinglai , LUAN Maotian , YANG Qing . Numerical analysis of ultimate bearing capacity of large-diameter cylindrical structures deeply embedded in cross-isotropic soft soil against lateral loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, (1): 94- 101.
4 WANG Xuefei , YANG Xu , ZENG Xiangwu . Lateral capacity assessment of offshore wind suction bucket foundation in clay via centrifuge modelling[J]. Journal of Renewable & Sustainable Energy, 2017, 9 (3): 595- 593.
5 矫滨田, 时忠民, 鲁晓兵, 等. 粉土地层中桶形基础水平动载响应的离心机实验研究[J]. 工程力学, 2010, 27 (7): 131- 141.
JIAO Bintian , SHI Zhongmin , LU Xiaobing , et al. Study on the responses of suction bucket in fine sand deposit under horizontal dynamic loading[J]. Engineering Mechanics, 2010, 27 (7): 131- 141.
6 ZHANG Zhichao , CHENG Xiaohui . Predicting the cyclic behaviour of suction caisson foundations using the finite element method[J]. Ships and Offshore Structures, 2017, 12 (7): 900- 909.
doi: 10.1080/17445302.2016.1158686
7 刘茜茜, 陈旭光, 冯涛, 等. 波浪作用下桶形基础冲刷特性试验研究[J]. 海洋工程, 2019, 37 (6): 104- 113.
LIU Xixi , CHEN Xuguang , FENG Tao , et al. Exp-erimental study on scouring characteristics of bucket foundation in wave[J]. The Ocean Engineering, 2019, 37 (6): 104- 113.
8 FOGLIA Aligi , IBSEN Lars Bo . Monopod bucket foundations under cyclic lateral loading[J]. International Journal of Offshore and Polar Engineering, 2016, 26 (2): 109- 115.
doi: 10.17736/ijope.2016.jcr48
9 WANG Hao , CHENG Xiaohui . Undrained bearing capacity of suction caissons for offshore wind turbine foundations by numerical limit analysis[J]. Marine Geotechnology, 2016, 34 (3): 252- 264.
doi: 10.1080/1064119X.2015.1004766
10 戚玉亮, 大塚久哲. ABAQUS动力无限元人工边界研究[J]. 岩土力学, 2014, (10): 3007- 3013.
QI Yuliang , HISANORI Otsuka . Study of ABAQUS dynamic infinite element artificial boundary[J]. Rock and Soil Mechanics, 2014, (10): 3007- 3013.
11 TAN F S. Centrifuge and theoretical modeling of conical footings onsand[D]. London, UK: Cambridge Univ-ersity, 1990.
12 陆卓翔, 乔光全. 不同时间间隔的波浪观测数据对其统计结果的影响[J]. 水运工程, 2020, (1): 1- 5.
LU Zhuoxiang , QIAO Guangquan . Influence of different time interval of wave observation data on statistical results[J]. Port & Waterway Engineering, 2020, (1): 1- 5.
13 荣维栋, 李洪斌. 近海单桩风机在波浪地震联合作用下的动力特性分析[J]. 江苏科技大学学报(自然科学版), 2015, 29 (1): 27- 32.
RONG Weidong , LI Hongbin . Analysis on the dynamic response of offshore wind turbine under the joint action of wave and seismic[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2015, 29 (1): 27- 32.
14 陈旭, 李建中. 结构动力分析中Rayleigh阻尼合理取值研究[J]. 结构工程师, 2013, 29 (5): 28- 33.
CHEN Xu , LI Jianzhong . Selection of the Rayleigh damping matrix in structural dynamic analysis[J]. Structural Engineers, 2013, 29 (5): 28- 33.
15 吴峰. 浅谈不同壁厚海洋桩基在波浪作用下的动力响应[J]. 四川水泥, 2020, (3): 312.
WU Feng . Dynamic response of pile foundation with different wall thickness under wave action[J]. Sichuan Cement, 2020, (3): 312.
16 张云策, 张桂欣, 毛继泽, 等. 地震和波浪共同作用下斜坡式防波堤的动力响应分析[J]. 应用科技, 2019, 46 (2): 19- 24.
ZHANG Yunce , ZHANG Guixin , MAO Jize , et al. Dynamic response analysis for mound breakwaters under the action of earthquake and wave loads[J]. Applied Science and Technology, 2019, 46 (2): 19- 24.
17 王飞, 王衔, 陈涛, 等. 瑞利阻尼在ABAQUS中的实现[J]. 计算机辅助工程, 2018, 27 (5): 72- 76.
WANG Fei , WANG Xian , CHEN Tao , et al. Implementation of Rayleigh damping in Abaqus[J]. Computer Aided Engineering, 2018, 27 (5): 72- 76.
18 武科. 滩海吸力式桶形基础承载力特性研究[D]. 辽宁: 大连理工大学, 2007.
WU Ke. A study on bearing capacity behavior of suction bucket foundation in beach-shallow sea[D]. Liaoning: Dalian University of Technology, 2007.
[1] YAN Jiqing, WANG Xiaojia, TIAN Maocheng. Condensation heat transfer characteristics of steam containing non-condensable gas on sawtooth surface [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 129-134.
[2] Shaosen MA,Weizhong CHEN,Wusheng ZHAO. Experimental study on energy dissipation of granite subjected to three-dimensional coupled static and dynamic loading [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 95-102.
[3] MA Zongzheng, SHAO Fengxiang, WANG Xinli, YANG Anjie. Thermoelectric generator system based on engine exhaust gas [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 122-127.
[4] SONG Kai-ming1, YU Jian2, DING Dong-sheng1, CHU Shao-ling3, ZHOU Yu-qiang4. The optimization of rowing bote type based on VOF method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[7] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[8] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[9] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[10] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .