Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (5): 76-83.doi: 10.6040/j.issn.1672-3961.0.2020.423

Previous Articles     Next Articles

Review and prospect of the development of heat exchanger structure

Wenjing DU1(),Junzhe ZHAO1,Lixin ZHANG2,Zhan WANG1,Wanxiang JI3,*()   

  1. 1. School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Shandong Huayu Pressure Vessel Co., Ltd., Jinan 250305, Shandong, China
    3. Institute of Thermal Science & Technology, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-10-19 Online:2021-10-20 Published:2021-09-29
  • Contact: Wanxiang JI E-mail:wjdu@mail.sdu.edu.cn;jwx@sdu.edu.cncn

Abstract:

The development of heat exchanger for more than 200 years was introduced. The generation and typical applications of heat exchangers with different structures were reviewed. Four heat exchangers with different structures including shell-and-tube heat exchanger, plate heat exchanger, microstructure heat exchanger, and printed circuit heat exchanger were described emphatically, and the development work of related geometric parameter optimization and structure improvement was carried out to realize heat transfer enhancement. The existing problems and limitations in the structure design of the heat exchanger were analyzed, and the specific suggestions and development trends for the structure improvement of the heat exchanger in the future were proposed.

Key words: heat exchangers, heat transfer enhancement, shell & tube heat exchanger, plate heat exchanger

CLC Number: 

  • TB126

Fig.1

Tubular heat exchanger in the early 19th century"

Fig.2

Enhanced heat transfer tube-corrugated tube and threaded pipe"

Fig.3

Insertion in tube-twisted tape"

Fig.4

Insertion in tube-helical blade"

Fig.5

Spiral baffle"

Fig.6

Star plate and corrugated plate"

Fig.7

Stainless steel cross flow microstructure heat exchanger"

Fig.8

Structure of printed circuit heat exchanger"

1 阎皓峰, 甘永平. 新型换热器与传热强化[M]. 北京: 宇航出版社, 1991: 11- 15.
2 SHEIKHOLESLAMI M , GORJI-BANDPY M , GANJI D D . Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices[J]. Renewable and Sustainable Energy Reviews, 2015, 49, 444- 469.
doi: 10.1016/j.rser.2015.04.113
3 LIU S , SAKR M . A comprehensive review on passive heat transfer enhancements in pipe exchangers[J]. Renewable and Sustainable Energy Reviews, 2013, 19, 64- 81.
doi: 10.1016/j.rser.2012.11.021
4 熊志立, 任书恒. 管壳式换热器TEMA标准的最新修订情况[J]. 化工炼油机械通讯, 1980, (2): 55- 61.
XIONG Zhili , REN Shuheng . The latest revision of TEMA standard for shell and tube heat exchangers[J]. Petro-Chemical Equipment, 1980, (2): 55- 61.
5 冯志良, 常春梅. 当代国外板式换热器摘萃[J]. 石油化工设备, 1999, (2): 3- 5.
FENG Zhiliang , CHANG Chunmei . Essence of overseas plate heat exchangers in today[J]. Petro-Chemical Equipment, 1999, (2): 3- 5.
6 嵇训达. 国外板翅式换热器的技术与应用[J]. 流体工程, 1986, (4): 38- 43.
JI Xunda . Technology and application of plate-fin heat exchanger abroad[J]. Fluid Machinery, 1986, (4): 38- 43.
7 薛焘, 佘志鸿, 陈诚, 等. 板翅式换热器技术的发展与应用[J]. 化工装备技术, 2016, 37 (4): 22- 25.
XUE Tao , SHE Zhihong , CHEN Cheng , et al. Technological development and application of plate-fin heat exchanger[J]. Chemical Equipment Technology, 2016, 37 (4): 22- 25.
8 嵇训达. 我国板翅式换热器技术进展[J]. 低温与特气, 1998, (1): 22- 27.
JI Xunda . Technical progress of plate-fin heat exchanger in China[J]. Low Temperature and Specialty Gases, 1998, (1): 22- 27.
9 黄鸿鼎. 美国传热研究公司的科研动态[J]. 石油化工设备, 1985, (3): 52- 56.
HUANG Hongding . Research trends of American heat transfer research company[J]. Petro-Chemical Equi-pment, 1985, (3): 52- 56.
10 陈绍元. 英国传热流体学会及其软件简介[J]. 石化技术与应用, 1990, (1): 11- 13.
CHEN Shaoyuan . Introduction to british heat transfer fluid society and its software[J]. Petrochemical Technology & Application, 1990, (1): 11- 13.
11 CHI S W . Heat pipe theory and practice: a source book[M]. Washington, USA: Hemisphere Pub, 1976: 1- 15.
12 TUCKERMAN D B , PEASE R F W . High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2 (5): 126- 129.
doi: 10.1109/EDL.1981.25367
13 于改革, 陈永东, 李雪, 等. 印刷电路板式换热器传热与流动研究进展[J]. 流体机械, 2017, 45 (12): 73- 79.
doi: 10.3969/j.issn.1005-0329.2017.12.015
YU Gaige , CHEN Yongdong , LI Xue , et al. Research progress in heat transfer and fluid flow of printed circuit heat exchanger[J]. Fluid Machinery, 2017, 45 (12): 73- 79.
doi: 10.3969/j.issn.1005-0329.2017.12.015
14 SOUTHALL D, DEWSON S J. Innovative compact heat exchangers[C]// Proceedings of ICAPP 10. SanDiego, USA: Curran Associates Inc, 2010.
15 陈永东, 于改革, 吴晓红. 新型扩散焊紧凑式换热器[J]. 压力容器, 2016, 33 (5): 46- 55.
doi: 10.3969/j.issn.1001-4837.2016.05.008
CHEN Yongdong , YU Gaige , WU Xiaohong . New type of diffusion bonding compact heat exchangers[J]. Pressure Vessel Technology, 2016, 33 (5): 46- 55.
doi: 10.3969/j.issn.1001-4837.2016.05.008
16 MUKHERJEE R . Effectively design shell-and-tube heat exchangers[J]. Chemical Engineering Progress, 1998, 94 (2): 21- 37.
17 邓斌, 王凯, 陶文铨. 新齿型内螺纹传热管蒸发性能研究[J]. 制冷学报, 2007, (4): 54- 58.
doi: 10.3969/j.issn.0253-4339.2007.04.010
DENG Bin , WANG Kai , TAO Wenquan . Evaporation performance research of new micro-fin copper tube[J]. Journal of Refrigeration, 2007, (4): 54- 58.
doi: 10.3969/j.issn.0253-4339.2007.04.010
18 杨胜, 张颂, 张莉, 等. 螺旋扁管强化传热技术研究进展[J]. 冶金能源, 2010, 29 (3): 17- 22.
doi: 10.3969/j.issn.1001-1617.2010.03.005
YANG Sheng , ZHANG Song , ZHANG Li , et al. Review on enhanced heat transfer technology of spiral flat tube[J]. Energy for Metallurgical Industry, 2010, 29 (3): 17- 22.
doi: 10.3969/j.issn.1001-1617.2010.03.005
19 李志安, 任克华, 宿痴. 波纹管换热器设计标准介绍及相关问题的探讨[J]. 压力容器, 2007, 24 (4): 61- 64.
doi: 10.3969/j.issn.1001-4837.2007.04.013
LI Zhian , REN Kehua , SU Chi . Introduction of corrugated tubes heat exchanger design standard and discussion of interrelated problem[J]. Pressure Vessel Technology, 2007, 24 (4): 61- 64.
doi: 10.3969/j.issn.1001-4837.2007.04.013
20 焦凤, 邓先和. 矩形自支撑缩放管换热器强化传热的结构优化[J]. 化工学报, 2013, 64 (7): 2376- 2385.
doi: 10.3969/j.issn.0438-1157.2013.07.010
JIAO Feng , DENG Xianhe . Structural optimization of converging-diverging tube based on heat transfer enhancement for self-support rectangle heat exchanger[J]. CIESC Journal, 2013, 64 (7): 2376- 2385.
doi: 10.3969/j.issn.0438-1157.2013.07.010
21 ZHANG Cancan , WANG Dingbiao , REN Kun , et al. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger[J]. Renewable and Sustainable Energy Reviews, 2016, 53, 433- 449.
doi: 10.1016/j.rser.2015.08.048
22 刘文勤, 杨国蓉, 郭丽. 管内螺旋弹簧式插入物强化传热研究进展[J]. 当代化工研究, 2017, (4): 98- 99.
doi: 10.3969/j.issn.1672-8114.2017.04.055
LIU Wenqin , YANG Guorong , GUO Li . Research progress on heat transfer enhancement of helical spring inserts in tubes[J]. Modern Chemical Research, 2017, (4): 98- 99.
doi: 10.3969/j.issn.1672-8114.2017.04.055
23 PROMVONGE G , EIAMSA-ARD S . Enhancement of heat transfer in a tube with regularly-spaced helical tape swirl generators[J]. Solar Energy, 2005, 78 (4): 483- 494.
doi: 10.1016/j.solener.2004.09.021
24 NAPHON P . Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert[J]. International Communications in Heat and Mass Transfer, 2006, 33 (2): 166- 175.
doi: 10.1016/j.icheatmasstransfer.2005.09.007
25 JAISANKAR S , RADHAKRISHNAN T K , SHEEBA K N . Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes[J]. Solar Energy, 2009, 83 (11): 1943- 1952.
doi: 10.1016/j.solener.2009.07.006
26 RAHIMI M , SHABANIAN S R , ALSAIRAFIl A A . Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering and Processing Process Intensification, 2009, 48 (3): 762- 770.
doi: 10.1016/j.cep.2008.09.007
27 NANAN K , YONGSIRI K , WONGCHAREE K , et al. Heat transfer enhancement by helically twisted tapes inducing co- and counter-swirl flows[J]. International Communications in Heat and Mass Transfer, 2013, 46, 67- 73.
doi: 10.1016/j.icheatmasstransfer.2013.05.015
28 NANAN K , THIANPONG C , PROMVONGE P , et al. Investigation of heat transfer enhancement by perforated helical twisted-tapes[J]. International Communications in Heat and Mass Transfer, 2014, 52, 106- 112.
doi: 10.1016/j.icheatmasstransfer.2014.01.018
29 PAL S , SAHA S K . Laminar flow and heat transfer through a circular tube having integral transverse corrugations and fitted with centre-cleared twisted-tape[J]. Experimental Thermal and Fluid Science, 2014, 57, 388- 395.
doi: 10.1016/j.expthermflusci.2014.06.008
30 EIAMSA-ARD P , PIRIYARUNGROJ N , THIANPONG C , et al. A case study on thermal performance assessment of a heat exchanger tube equipped with regularly-spaced twisted tapes as swirl generators[J]. Case Studies in Thermal Engineering, 2014, (3): 86- 102.
31 EIAMSA-ARD S , KONGKAITPAIBOON V , NANAN K . Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes[J]. Chinese Journal of Chemical Engineering, 2013, 21 (6): 585- 593.
doi: 10.1016/S1004-9541(13)60504-2
32 CHSNG SW , HUANG BJ . Thermal performances of tubular flows enhanced by ribbed spiky twist tapes with and without edge notches[J]. International Journal of Heat and Mass Transfer, 2014, 73, 645- 663.
doi: 10.1016/j.ijheatmasstransfer.2014.02.049
33 韩继广, 吴新, 周翼, 等. 管内插入扭带及螺旋线圈的传热与阻力特性试验研究[J]. 热能动力工程, 2012, 27 (4): 434- 438.
HAN Jiguang , WU Xin , ZHOU Yi . Experimental study of the heat transfer and resistance characteristics of a tube internally inserted by a twisted tape and a spiral coil[J]. Journal of Engineering for Thermal Energy & Power, 2012, 27 (4): 434- 438.
34 LIU Xiaoqin , YU Jianlin , YAN Gang . A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches[J]. International Journal of Heat and Mass Transfer, 2016, 100, 199- 207.
doi: 10.1016/j.ijheatmasstransfer.2016.04.081
35 范继珩, 林力, 骆枫, 等. 开孔折流板对列管式换热器传热性能的影响研究[J]. 压力容器, 2020, 37 (2): 41- 50.
FAN Jiheng , LIN Li , LUO Feng , et al. Study on the effect of holed-baffles on the heat transfer performance of tubular heat exchanger[J]. Pressure Vessel Technology, 2020, 37 (2): 41- 50.
36 AMALFI R L , VAKILI-FARAHANI F , THOME J R . Flow boiling and frictional pressure gradients in plate heat exchangers: part 1: review and experimental database[J]. International Journal of Refrigeration, 2016, 61, 166- 184.
doi: 10.1016/j.ijrefrig.2015.07.010
37 DURMUS A , BENLI H , KURTBAS I , et al. Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles[J]. International Journal of Heat and Mass Transfer, 2009, 52 (5): 1451- 1457.
38 DOO J H , HA M Y , MIN J K , et al. An investigation of cross-corrugated heat exchanger primary surfaces for advanced intercooled-cycle aero engines: part-Ⅱ: design optimization of primary surface[J]. International Journal of Heat and Mass Transfer, 2013, 61, 138- 148.
doi: 10.1016/j.ijheatmasstransfer.2013.01.084
39 WAIS J , MIKIELEWICZ D . Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger[J]. Applied Thermal Engineering, 2016, 93, 1337- 1346.
doi: 10.1016/j.applthermaleng.2015.08.101
40 LUSHCHIK V G , MAKAROVA M S , RSEHMIN A I . Plate heat exchanger with diffuser channels[J]. High Temperature, 2020, 58 (3): 352- 359.
doi: 10.1134/S0018151X2003013X
41 BRANDNNER J J , ANURJEW E , BOHN L , et al. Concepts and realization of microstructure heat exch-angers for enhanced heat transfer[J]. Experimental Thermal and Fluid Science, 2006, 30 (8): 801- 809.
doi: 10.1016/j.expthermflusci.2006.03.009
42 谢洪涛, 李星辰, 绳春晨, 等. 微通道换热器结构及优化设计研究进展[J]. 真空与低温, 2020, 26 (4): 310- 316.
XIE Hongtao , LI Xingchen , SHENG Chunchen , et al. Progress in structure and optimal design of microchannel heat sink[J]. Vacuum and Cryogenics, 2020, 26 (4): 310- 316.
43 WANG Hongtao , CHEN Zhihua , GAO Jianguo . Infl-uence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107, 870- 879.
doi: 10.1016/j.applthermaleng.2016.07.039
44 SALIMPOUR M R , SHARIFHASAN M , SHIRANI E . Constructal optimization of microchannel heat sinks with noncircular cross sections[J]. Heat Transfer Engineering, 2013, 34 (10): 863- 874.
doi: 10.1080/01457632.2012.746552
45 ESMAILI Q , RANJBAR A A , PORKHIAL S . Experimental analysis of heat transfer in ribbed microchannel[J]. International Journal of Thermal Science, 2018, 130, 140- 147.
doi: 10.1016/j.ijthermalsci.2018.04.020
46 DENG Daxiang , XIE Yanlin , HUANG Qinsong , et al. Flow boiling performance of Omega-shaped reentrant copper microchannels with different channel sizes[J]. Experimental Thermal and Fluid Science, 2015, 69, 8- 18.
doi: 10.1016/j.expthermflusci.2015.07.016
47 GONG L J , KOTA K , TAO W , et al. Thermal performance of microchannels with wavy walls for electronics cooling[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2011, 1 (7): 1029- 1035.
48 DENG Daxiang , WAN Wei , QIN Yu , et al. Flow boiling enhancement of structured microchannels with micro pin fins[J]. International Journal of Heat and Mass Transfer, 2017, 105, 338- 349.
doi: 10.1016/j.ijheatmasstransfer.2016.09.086
49 KANDLIKAR S G . Review and projections of integrated cooling systems for three-dimensional integrated circuits[J]. Journal of Electronic Packaging, 2014, 136 (2): 024001.
doi: 10.1115/1.4027175
50 GUPTA R , GEYER P E , FLETCHER D F , et al. Thermohydraulic performance of a periodic trapezoidal channel with a triangular cross-section[J]. International Journal of Heat & Mass Transfer, 2008, 51 (11): 2925- 2929.
51 WEN Zhexi , LÜ Yigao , LI Qing . Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers[J]. Science China(Technological Sciences), 2020, 63 (4): 655- 667.
doi: 10.1007/s11431-019-1492-2
52 褚雯霄, 李雄辉, 马挺, 等. 不同肋片结构的印刷电路板换热器传热与阻力特性[J]. 科学通报, 2017, 62 (16): 1788- 1794.
CHU Wenxiao , LI Xionghui , MA Ting , et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures[J]. Chinese Science Bulletin, 2017, 62 (16): 1788- 1794.
53 张灿灿. 换热管内强化传热、污垢特性及拓扑优化研究[D]. 郑州: 郑州大学, 2018.
ZHANG Cancan. The research on heat transfer enhancement, fouling characteristics and topological optimization in heat exchanger tube[D]. Zhengzhou: Zhengzhou University, 2018.
54 ARANI A , MORADI R . Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157 (5): 113736.
[1] CHENG Shen, SUN Feng-zhong*. Experimental analysis of condensation heat transfer characteristics under vacuum condition of Nickel based implanted tube bundle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 90-94.
[2] CHE Cui-cui, TIAN Mao-cheng*, LENG Xue-li. Numerical simulations on convective heat transfer characteristics of
 laminar flow with longitudinal vortex induced by winglets
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 104-110.
[3] ZHANG Jing-zhi, TIAN Mao-cheng*, ZHANG Guan-min, LENG Xue-li. Effects of the contact points distribution on heat transfer and resistance performances of plate heat exchangers [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 121-126.
[4] JIANG Bo1, TIAN Mao-cheng2*, HAO Wei-dong1, LIU Fu-guo1. Experiment and numerical simulation on inherent vibration charact eristics of the new elastic tube bundle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 132-136.
[5] TIAN Mao-cheng1, JIANG Bo2, LENG Xue-li1, CHENG lin1. Experimental research on heat transfer enhancement characteristics of  a new type of flow-induced elastic tube bundle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(5): 21-25.
[6] TANG Yu-feng, TIAN Mao-cheng, LENG Xue-li. Field synergy analyses on inner flow and heat transfer
characteristics of spirally corrugated tubes
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 158-162.
[7] CUI Yong-zhang1,2, TIAN Mao-cheng1, LI Guang-peng2. 3D numerical simulation of fluid flow and heat transfer in a circular tube with edge-fold-twisted-tape inserts [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(2): 143-148.
[8] LUAN Zhi-jian,ZHANG Guan-min,ZHANG Jun-long,PAN Ji-hong . Mechanism of flow pattern affected by corrugation geometric parameters in the chevron-type plate heat exchanger [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 34-37 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[4] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[5] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[6] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[7] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[8] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[10] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .