Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (5): 63-75.doi: 10.6040/j.issn.1672-3961.0.2021.234

Previous Articles     Next Articles

Research progress of ocean wave energy converters

Yanjun LIU1,2,3,Shuang WU2,3,Dengshuai WANG2,3,Ruohong WANG2,3   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
    2. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    3. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, Shandong University, Jinan 250061, Shandong, China
  • Received:2021-05-11 Online:2021-10-20 Published:2021-09-29

Abstract:

In order to accurately keeping the developments of ocean wave energy utilization technology, the important research progress of wave energy converters was reviewed. The forms of wave energy converters had not yet converged. According to the classification principle of different energy capture methods, the working principle and the energy conversion system of three main types of devices, namely, oscillating water column, overtopping and oscillating bodies were introduced. The advantages and disadvantages of each type of converter were analyzed. Typical engineering devices were selected for detailed introduction. The engineering devices which had been completed sea trial in China were summarized. It has been found that the oscillation type was the most popular type of converter in China. The research progress related to the performance evaluation of wave energy converters were summarized, but there was no unified evaluation standard yet. The difficulties and the main breakthrough directions of the developments of wave energy converters were discussed from three aspects of high efficiency and stability, reliability and cost, and the construction of diversified integrated platforms.

Key words: wave energy conversion, device type, working principle, performance analysis, development tendency

CLC Number: 

  • P74

Fig.1

Schematic diagram of wave energy converters"

Fig.2

Schematic diagram of self-rectifying air turbines"

Fig.3

Schematic diagram of water turbines"

Fig.4

Schematic diagram of the direct drive and hydraulic transmission"

Table 1

Classification and representative devices of wave energy converters"

波浪能捕获方式 固定方式 装置名称
振荡水柱式 漂浮式 Mighty Whale, Sperboy, SparBuoy, Oceanlinx, YetiCluster, Kaimei, LeanCon
固定式 Pico, LIMPET, Sakata, REWEC3, 航标式微型OWC, Mutriku
振荡体式 漂浮式 AquaBuoy, IPS Buoy, FO3, Wavebob, PowerBuoy, WETEnGen, WETNZ, 山大I号, 鹰式I号, Pelamis, PSFrog, SEAREV, Waveberg, WaveRider, 集大I号
固定式 AWS, CETO, WaveRoller, Oyster, The Mace
越浪式 漂浮式 Wave Dragon
固定式 TAPCHAN, SSG

Fig.5

Pico wave energy device"

Fig.6

LIMPET wave energy device"

Fig.7

Mutriku wave energy device"

Fig.8

Kaimei wave energy device"

Fig.9

LeanCon wave energy device"

Fig.10

TAPCHAN wave energy device"

Fig.11

SSG wave energy device"

Fig.12

Wave Dragon wave energy device"

Fig.13

PowerBuoy wave energy device"

Fig.14

Wavestar wave energy device"

Fig.15

Oyster wave energy device"

Fig.16

BioWAVE wave energy converter"

Fig.17

GIEC wave energy converter series"

Fig.18

100 kW bottom-hinged flap wave energy converter of NOTC"

Fig.19

"Shanda Ⅰ" wave energy device"

Fig.20

HailongⅠ floating wave energy device of CSIC710"

Fig.21

Hailing wave energy device of OUC"

Fig.22

JidaⅠ wave energy device"

1 COLTON W. The outlook for energy: a view to 2040[R]. Riyadh, Kingdom of Saudi Arabia: Exxonmo-bil, 2013.
2 MWASILU F , JUNG J . Potential for power generation from ocean wave renewable energy source: a comprehensive review on state-of-the-art technology and future prospects[J]. IET Renewable Power Generation, 2019, 13 (3): 363- 375.
doi: 10.1049/iet-rpg.2018.5456
3 ZHANG Yongxing , ZHAO Yongjie , SUN Wei , et al. Ocean wave energy converters: technical principle, device realization, and performance evaluation[J]. Renewable and Sustainable Energy Reviews, 2021, 141, 1- 20.
4 WU S , LIU Y , QIN J . Experimental analyses of two-body wave energy converters with hydraulic power take-off damping in regular and irregular waves[J]. IET Renewable Power Generation, 2021, 20, 1- 11.
5 LIU Yijin , LI Ye , HE Fenglan , et al. Comparison study of tidal stream and wave energy technology development between China and some Western countries[J]. Renewable and Sustainable Energy Reviews, 2017, 76 (17): 701- 716.
6 EMRE O , ISMAIL H . Control, power and electrical components in wave energy conversion systems: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 67 (17): 106- 115.
7 RUSU L , ONEA F . The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power[J]. Renewable and Sustainable Energy Reviews, 2017, 75 (17): 1348- 1362.
8 ADERINTO T , LI H . Ocean wave energy converters: status and challenges[J]. Energies, 2018, 11 (5): 1250- 1275.
doi: 10.3390/en11051250
9 FALCO A F D . Wave energy utilization: a review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2010, 14 (3): 899- 918.
doi: 10.1016/j.rser.2009.11.003
10 MELO A B, BHUYAN G. 2008 annual report on ocean energy systems[R]. Sicilia, Italy: IEA-OES, 2009.
11 EVALUATION Report. Marine energy challenge, oscillating water column wave energy converter[R]. Oak Ridge, USA: Department of Energy, 2005.
12 CLEMENT A , MCCULLEN P , FALCAO A , et al. Wave energy in Europe: current status and perspectives[J]. Renewable and Sustainable Energy Reviews, 2002, 6 (5): 405- 431.
doi: 10.1016/S1364-0321(02)00009-6
13 MUHAMMAND A M , OMAR Y , AHMED Y M , et al. Wave energy device and breakwater integration: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77, 43- 58.
doi: 10.1016/j.rser.2017.03.110
14 TAKAO M , SETOGUCHI T . Air turbines for wave energy conversion[J]. Energy Conversion Management, 2012, 47, 1- 10.
15 O′SULLIVAN D, MOLLAGHAN D, BLAVETTE A, et al. Dynamic characteristics of wave and tidal energy converters & a recommended structure for development of a generic model for grid connection[R]. Dublin, Ireland: IEA-OES, 2010.
16 FINNIGAN T, AULD D. Model testing of a variable-pitch aerodynamic turbine[C]//Proceedings of 13th International Offshore and Polar Engineering Conference. Hawaii, USA: (s. n. ), 2003: 357-360.
17 CURRAN R, DENNISS T, BOAKE C. Multidisci-plinary design for performance: ocean wave energy conversion [C]//Proceedings of 10th International Offshore and Polar Engineering Conference. Seattle, USA: (s. n. ) 2000: 434-441.
18 HONG Y , WATERS R , BOSTROM C , et al. Review on electrical control strategies for wave energy converting systems[J]. Renewable and Sustainable Energy Reviews, 2014, 29 (5): 329- 342.
19 KHALIGH A , ONAR O C . Energy harvesting: solar, wind, and ocean energy conversion systems[M]. Florida, USA: CRC Press, 2010: 1- 5.
20 FALCAO A , HENRIQUES J . Oscillating-water-column wave energy converters and air turbines: a review[J]. Renewable Energy, 2016, 85 (16): 1391- 1424.
21 MAWOOA D, LATCHOOMUN L, KAULLY R G, et al. An overview of wave energy technologies in the Mauritian context[C]//5th International Symposium on Environment Friendly Energies and Applications. Rome, Italy: IEEE Press, 2018: 1-6.
22 VICINANZA D , MARGHERITINI L , KOFOED J P , et al. The SSG wave energy converter: performance, status and recent developments[J]. Energies, 2012, 5 (2): 193- 226.
doi: 10.3390/en5020193
23 刘延俊, 贺彤彤. 波浪能利用发展历史与关键技术[J]. 海洋技术学报, 2017, 36 (4): 76- 81.
LIU Yanjun , HE Tongtong . Wave energy utilization: history of development and key technologies[J]. Journal of Ocean Technology, 2017, 36 (4): 76- 81.
24 张伟. 液压波浪能发电装置稳定性及控制策略研究[D]. 济南: 山东大学, 2018.
ZHANG Wei. Study on stability and control strategy of hydraulic wave power generation device[D]. Jinan: Shandong University, 2018.
25 QIU Shouqiang , LIU Kun , WANG Dongjiao , et al. A comprehensive review of ocean wave energy research and development in China[J]. Renewable and Sustainable Energy Reviews, 2019, 113 (19): 1- 19.
26 FAIZ J , NEMATSABERI A . Linear electrical generator topologies for direct-drive marine wave energy conversion-an overview[J]. IET Renewable Power Generation, 2017, 11 (9): 1163- 1176.
doi: 10.1049/iet-rpg.2016.0726
27 ALBERT A , BERSELLI G , BRUZZONE L , et al. Mechanical design and simulation of an onshore four-bar wave energy converter[J]. Renewable Energy, 2017, 114 (17): 766- 774.
28 OSAWA H, MIYAZAKI T. Wave-PV hybrid generation system carried in the offshore floating type wave power device "Mighty Whale" [C]//MTS/IEEE Techno-Ocean′04 Conference. Kobe, Japan: IEEE Press, 2004: 1860-1866.
29 OSAWA H, WASHIO Y, OGATA T, et al. The offshore floating type wave power device "Mighty Whale" open sea tests: performance of the prototype[C]//12th International Offshore and Polar Engineering Conference. Kyushu, Japan: ISOPE, 2002: 595-600.
30 SPENCER S M, THOM P R. Wave-energy buoy: 12/192723[P]. 2010-08-31.
31 BRADLEY C, VENEZIA W. Spar buoy platform for water wave, turbulence and underwater electric field sensors[C]//IEEE/OES 10th Current, Waves and Turbulence Measurements. Monterey, USA: IEEE Press, 2010: 190-197.
32 HINE R G, HINE D L, RIZZI J D. Wave power: US7371136 B2[P]. 2011-10-25.
33 OLCOPL T D. Oceanlinx technical facts sheet [EB/OL]. (2015-03-15)[2020-12-20]. http://www.ocean-linx.com/images/reports/andlinks/oceanlinx_technical_facts_sheet_v3_eng.pdf.
34 PAGE J. Wave energy converters: US20110057448[P]. 2011-03-10.
35 FODOREAN D, SZABO L, MIRAOUI A. Generator solutions for stand alone pico-electric power plants[C]//IEEE International Electric Machines and Drives Conference. Miami, USA: IEMDC Press, 2009: 434-438.
36 POP E, LEBA M, BARBU C T, et al. Modeling, simulation and control of pico-hydropower plant[C]//4th WSEAS/IASME International Conference on Dynamical Systems and Control. Corfu, Greece: ICDSC Press, 2008: 103-108.
37 ALCOM R G, BEATTIE W C. Power quality assess-ment from a wave-power station[C]//16th International Conference and Exhibition on Electricity Distribution. Amsterdam, Netherlands: ICEED Press, 2001: 238-241.
38 HEATH T, WHITTAKER T J T, BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]// The 4th European Wave Energy Conference. Islay, Scotland: IEEE Press, 2000: 49-55.
39 WHITTAKER T J T , BEATTIE W , FOLLEY M , et al. The LIMPET wave power project-the first years of operation[J]. Renewable Energy, 2003, 1 (1): 1- 8.
40 SUZUKI M, ARAKAWA C, TAKAHASHI S. Performance of wave power generating system installed in break water at Sakataport in Japan[C]//14th International Offshore and Polar Engineering Conference (2004). Toulon, France: ISOPE Press, 2004: 202-209.
41 顾煜炯, 谢典, 耿直. 波浪能发电技术研究进展[J]. 电网与清洁能源, 2016, 32 (5): 83- 87.
doi: 10.3969/j.issn.1674-3814.2016.05.015
GU Yujiong , XIE Dian , GENG Zhi . Progress of research on wave energy generation technology[J]. Advances of Power System and Hydroelectric Engineering, 2016, 32 (5): 83- 87.
doi: 10.3969/j.issn.1674-3814.2016.05.015
42 ENCISO Y T, ORTUBIA I, AGUILETA L I L, et al. Mutriku wave power plant: from the thinking out to the reality[C]//8th European Wave and Tidal Energy Conference Proceedings. Uppsala, Sweden: EWTEC Press, 2009: 319-329.
43 HOLZMAN D C . Blue power: turning tides into electricity[J]. Environmental Health Perspective, 2007, 115 (12): 590- 593.
44 DUNNETT D , WALLACE J S . Electricity generation from wave power in Canada[J]. Renewable Energy, 2009, 34 (1): 179- 195.
doi: 10.1016/j.renene.2008.04.034
45 WEINSTEIN A, FREDRIKSON G, PARKS M J, et al. AquaBuOY-the offshore wave energy converter num-erical modeling and optimization[C]//MTS/IEEE Techno-Ocean′04 Conference. Kobe, Japan: IEEE Press, 2004: 1854-1859.
46 PAYNE G S, TAYLOR J R M, PARKIN P, et al. Numerical modelling of the sloped IPS buoy wave energy converter[C]//The Sixteenth International Offshore and Polar Engineering Conference. San Francisco, USA: IOPEC Press, 2006: 396-402.
47 GOMES R P F , HENRIQUES J C , GATO L M C , et al. IPS 2-body wave energy converter: acceleration tube optimization[J]. International Journal of Offshore Polar, 2010, 20 (4): 247- 255.
48 FALCAO A F O , CANDIDO J J , JUSTINO P A P , et al. Hydrodynamics of the IPS buoy wave energy converter including the effect of non-uniform acceleration tube cross section[J]. Renewable Energy, 2012, 41 (1): 105- 114.
49 GARNAUD X , MEI C C . Comparison of wave power extraction by a compact array of small buoys and by a large buoy[J]. IET Renewable Power Generation, 2010, 4 (6): 519- 530.
doi: 10.1049/iet-rpg.2009.0166
50 KNIGHT H . Offshore device is hydropower′s next wave[J]. Engineer, 2003, 292 (7628): 1- 9.
51 WBCOP A. WaveBob [EB/OL]. (2003-01-18)[2020-12-21]. www.wavebob.com/key-features.
52 WOOD J . Racing the waves[J]. Power Engineering, 2004, 18 (3): 24- 26.
doi: 10.1049/pe:20040304
53 KIME P . Harnessing wave energy: navy program in Hawaii to see fully functional[J]. Power This Year Sea Power, 2010, 53 (3): 28- 39.
54 COPPER M R. Marine Renewables[EB/OL]. (2015-05-25) [2020-12-21]. www. sea-technology. com.
55 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34 (14): 1- 12.
YOU Yage , LI Wei , LIU Weimin . Development status and perspective of marine energy conversion systems[J]. Automation of Electric Power Systems, 2010, 34 (14): 1- 12.
56 DALTON G J , ALCORN R , LEWIS T . Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America[J]. Renewable Energy, 2010, 35 (2): 443- 455.
doi: 10.1016/j.renene.2009.07.003
57 AHMED T, NISHIDA K, NAKAOKA M. The potential for grid power integration of offshore ocean wave energy in the UK[C]//The 2010 International Power Electronics Conference. Sapporo, Japan: IPEC Press, 2010: 3204-3211.
58 AHMED T, NISHIDA K, NAKAOKA M. The commercial advancement of 16 mw offshore wave power generation technologies in the south west of the UK[C]//The 8th International Conference on Power Electronics. Jeju, Korea: ECCE Press, 2011: 1476-1483.
59 POLINDER H, SCUOTTO M. Wave energy converters and their impact on power systems[C]//2005 International Conference on Future Power Systems. Amsterdam, Netherlands: ICFPS Press, 2005: 1-9.
60 AHMED T, NISHIDA K, NAKAOKA M. Grid power integration technologies for offshore ocean wave energy[C]//2010 IEEE Energy Conversion Congress and Exposition. Atlanta, USA: ECCE Press, 2010: 2378-2385.
61 HENDERSON R . Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable Energy, 2006, 31 (2): 271- 283.
doi: 10.1016/j.renene.2005.08.021
62 MCCABE A P , BRADSHAW A , MEADOWCROFT J A C , et al. Developments in the design of the PS Frog Mk 5 wave energy converter[J]. Renewable Energy, 2006, 31 (2): 141- 151.
doi: 10.1016/j.renene.2005.08.013
63 RUELLAN M , AHMED H B , MULTON B , et al. Design methodology for a SEAREV wave energy converter[J]. IEEE Trans Energy Conver, 2010, 25 (3): 760- 767.
doi: 10.1109/TEC.2010.2046808
64 BABARIT A, CLEMENT A, RURE J, et al. SEAREV: a fully integrated wave energy converter[C]//Proceedings of the Offshore Wind and Other Marine Renewable Energies in Mediterranean and European Seas. Rome, Italy: IEEE Press, 2006: 1-11.
65 BABARIT A , CLEMENT A . Optimal latching control of a wave energy device in regular and irregular waves[J]. Applied Ocean Research, 2006, 28 (2): 77- 91.
doi: 10.1016/j.apor.2006.05.002
66 张军, 李成龙, 何宏舟, 等. 多浮摆式采能装置水动力性能的时域计算及模型试验[J]. 水动力学研究与进展A辑, 2016, 31 (6): 769- 773.
ZHANG Jun , LI Chenglong , HE Hongzhou , et al. Time-domain simulation and model test on hydrodynamic characteristics of multi-pendulum wave power converter[J]. Journal of Hydrodynamics, 2016, 31 (6): 769- 773.
67 WU Feng , ZHANG X P , JU Ping , et al. Modeling and control of AWS-based wave energy conversion system integrated into power grid[J]. IEEE Trans Power Syst, 2008, 23 (3): 1196- 1204.
doi: 10.1109/TPWRS.2008.922530
68 POLINDER H , MECROW B C , JACK A G . Conventional and TFPM linear generators for direct-drive wave energy conversion[J]. IEEE Trans Energy Conver, 2005, 20 (2): 260- 267.
doi: 10.1109/TEC.2005.845522
69 VALERIO D , BEIRAO P , COSTA J S . Optimisation of wave energy extraction with the Archimedes Wave Swing[J]. Ocean Engineering, 2007, 34 (17/18): 2330- 2344.
70 WEBB C . Wave energy: size matters[J]. Power, 2015, 159 (7): 1- 11.
71 WOOD K . Wave-energy conversion[J]. Compos Technol, 2010, 30 (1): 1- 10.
72 Waveroller Technology. 1 MW Wave Energy Power Plant [EB/OL]. (2015-05-25)[2021-01-23]. http://www.cm-peniche.pt/_uploads/pdf_noticias/waverollerawenergyoyeneolicasagrupolena.pdf.
73 WHITTAKER T , FOLLEY M . Nearshore oscillating wave surge converters and the development of Oyster[J]. Philos T R Soc A, 2012, 370 (1959): 345- 364.
doi: 10.1098/rsta.2011.0152
74 COLLIER D, WHITTAKER T, CROWLEY M. The construction of Oyster a nearshore surging wave energy converter[C]//The 2nd International Conference on Ocean Energy. Brest, France: IEEE Press, 2008: 1-7.
75 BEELS C , TROCH P , DEVISCH K , et al. Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters[J]. Renewable Energy, 2010, 35 (8): 1644- 1661.
doi: 10.1016/j.renene.2009.12.001
76 KOFOED J P , FRIGAARD P , FRIIS-MADSEN E , et al. Prototype testing of the wave energy converter Wave Dragon[J]. Renewable Energy, 2006, 31 (2): 181- 189.
doi: 10.1016/j.renene.2005.09.005
77 TEDD J , KOFOED J P . Measurements of overtopping flow time series on the Wave Dragon, wave energy converter[J]. Renewable Energy, 2009, 34 (3): 711- 717.
doi: 10.1016/j.renene.2008.04.036
78 ZHOU Z, KNAPP W, MACENRI J, et al. Permanent magnet generator control and electrical system configuration for Wave Dragon MW wave energy take-off system[C]//International Symposium on Industrial Electronics. Cambridge, England: IEEE Press, 2008: 1580-1585.
79 EBSCO A. ABS Energy Research[R]. Berkeley, USA: [s. n. ], 2007.
80 MEHLUM E. Commercial tapered channel wave power plants in Australia and Indonesia[C]//Ocean Technologies and Opportunities in the Pacific for the 90′s. Honolulu, USA: [s. n. ], 1991: 535-538.
81 VICINANZA D , FRIGAARD P . Wave pressure acting on a sea wave slot-cone generator[J]. Coastal Engineering, 2008, 55 (6): 553- 568.
doi: 10.1016/j.coastaleng.2008.02.011
82 VICINANZA D , CIARDULLI F , BUCCINO M , et al. Wave loadings acting on an innovative breakwater for energy production[J]. J Coast Res, 2011, 64 (1): 608- 612.
83 LAGOUN M, BENALIA A, BENBOUZID M. Ocean wave converters: state of the art and current status[C]//2010 IEEE International Energy Conference. (S. l. ): IEEE Press, 2010: 636-641.
84 NOAD I , PORTER R . Modelling an articulated raft wave energy converter[J]. Renewable Energy, 2017, 114 (1): 1146- 1159.
85 HEATH T, WHITTAKER T J T, BOAKE C B. The design, construction and operation of the LIMPET wave energy converter[C]//Proceedings of 4th European Wave Energy Conference. Rome, Italy: IEEE Press, 2000: 49-55.
86 MCCORMICK M E , MCCABE R P , KRAEMER D . Utilization of a hinged-barge wave energy conversion system[J]. International Journal of Electric Power, 1999, 19 (1): 11- 16.
87 TORRE Y, ORTUBIA I, LÓPEZ L I, et al. Mutriku wave power plant: from the thinking out to the reality[C]//Proceedings of the 8th European Wave Tidal Energy Conference. Uppsala, Sweden: IEEE Press, 2009: 319-329.
88 TETHYS P N. Mutriku wave power plant [EB/OL]. (2015-05-25)[2021-01-23]. http://tethys.pnnl.gov/project-sites/mutriku-wave-power-plant.
89 HOTTA H, MIYAZAKI T, ISHII S. On the perfor-mance of the wave power device Kaimei[C]//Proceedings of 7th International Conference Offshore Mechanics and Arctic Engineering. New York, USA: ICOMAE Press, 1988: 91-96.
90 LCOP A. The LEANCON wave energy device [EB/OL]. (2016-10-12)[2021-01-23]. http://www.leancon.com.
91 MAWOOA D, LATCHOOMUN L, KAULLY R G, et al. An overview of wave energy technologies in the Mauritian context[C]//2018 5th International Symposium on Environment-friendly Energies and Applications (EFEA). Rome, Italy: IEEE Press, 2018: 1-6.
92 VICINANZA D , MARGHERITINI L , KOFOED J P , et al. The SSG wave energy converter: performance, status and recent developments[J]. Energies, 2012, 5 (2): 193- 226.
doi: 10.3390/en5020193
93 KOFOED J P , FRIGAARD P , FRIIS MADSEN E , et al. Prototype testing of the wave energy converter wave dragon[J]. Renewable Energy, 2006, 31 (2): 181- 189.
doi: 10.1016/j.renene.2005.09.005
94 BEELS C , TROCH P , VISCH K , et al. Application of the time dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters[J]. Renewable Energy, 2010, 35 (1): 1644- 1661.
95 OPTCOP M. PowerBuoy. PowerBuoy wave energy converter [EB/OL]. (2005-12-19)[2021-01-23]. https://www.oceannews.com/news/energy/ocean-power-technologies-signs-agreement-with-premier-oil.
96 KRAMER M M, MARQUIS L, FRIGAARD P, et al. Performance evaluation of the Wavestar prototype[C]//Proceedings of the 9th European Wave Tidal and Energy Conference. Southampton, UK: EWTEC Press, 2011: 1-7.
97 MARQUIS L, KRAMER M. Introduction of Wavestar wave energy converters at the Danish offshore wind power plant Horns Rev 2[C]//Proceedings of the 4th International Conference on Ocean Energy. Dublin, Ireland: ICOE Press, 2012: 1-7.
98 DREW B , PLUMMER A , SAHINKAYA M N . A review of wave energy converter technology[J]. the Institution of Mechanical Engineers, 2009, 223, 887- 902.
doi: 10.1243/09576509JPE782
99 BPSCO E B. BioWAVE wave energy converter [EB/OL]. (2001-11-16)[2021-01-23]. http://bps.energy/biowave.
100 ZHANG H , AGGIDIS G A . Nature rules hidden in the biomimetic wave energy converters[J]. Renewable and Sustainable Energy Reviews, 2018, 97 (18): 28- 37.
101 王坤林, 游亚戈, 张亚群. 海岛可再生独立能源电站能量管理系统[J]. 电力系统自动化, 2010, 34 (14): 13- 17.
WANG Kunlin , YOU Yage , ZHANG Yaqun . Energy management system of renewable stand-alone energy power generation system in an island[J]. Automation of Electric Power Systems, 2010, 34 (14): 13- 17.
102 游亚戈, 盛松伟, 吴必军. 海洋波浪能发电技术现状与前景[C]//第十五届中国海洋(岸)工程学术讨论会论文集(上). 太原, 中国: 中国海洋学会, 2011: 9-16.
YOU Yage, SHENG Songwei, WU Bijun. Current status and prospect of wave energy technologies[C]//Proceedings of the 15th China Ocean (Onshore) Engineering Conference. Taiyuan: CSOC Press, 2011: 9-16.
103 王锰, 李蒙, 夏增艳, 等. 浮力摆式波浪发电装置模型试验[J]. 海洋技术, 2013, 32 (1): 79- 82.
WANG Meng , LI Meng , XIA Zengyan , et al. Model test of buoyant pendulum wave-power generation device[J]. Ocean Technolgy, 2013, 32 (1): 79- 82.
104 ZHAO Haitao , SHEN Jiafa . An experimental study on hydrodynamic performance of a bottom-hinged flap wave energy converter[J]. Journal of Ship Mechanics, 2013, 17 (1): 1097- 1106.
105 熊焰, 王海峰, 崔琳, 等. 大管岛多能互补独立发电系统的发电量设计[J]. 海洋技术, 2009, 28 (1): 101- 103.
doi: 10.3969/j.issn.1003-2029.2009.01.025
XIONG Yan , WANG Haifeng , CUI Lin , et al. Study on power generation design of stand-alone hybrid power system in Daguan island[J]. Ocean Technology, 2009, 28 (1): 101- 103.
doi: 10.3969/j.issn.1003-2029.2009.01.025
106 LIU Y J, LI Y, LIU J B. 120 kW floating buoy hydraulic wave energy convent device[C]//Proceedings of the 2nd China Ocean Renewable Energy Develo-pment Annual Conference. Beijing: IEEE Press, 2013: 1-5.
107 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017, 3, 30- 37.
SHI Hongda , WANG Chuankun . Progress and prospect of Marine energy technology in China[J]. Solar Energy, 2017, 3, 30- 37.
108 O'CONNOR M , LEWIS T , DALTON G . Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe[J]. Renewable Energy, 2013, 50 (1): 889- 900.
109 BABARIT A , HALS J , MULIAWAN M J , et al. Numerical benchmarking study of a selection of wave energy converters[J]. Renewable Energy, 2012, 41 (2): 44- 63.
110 BABARIT A . A database of capture width ratio of wave energy converters[J]. Renewable Energy, 2015, 80 (2): 610- 628.
111 谢典, 顾煜炯, 余志文, 等. 波浪能发电装置的性能分析及综合评价[J]. 水力发电学报, 2017, 8, 115- 122.
XIE Dian , GU Yujiong , YU Zhiwen , et al. Performance analysis and comprehensive evaluation of wave energy power generation devices[J]. Journal of Hydroelectric Engineering, 2017, 8, 115- 122.
112 UIHLEIN A , MAGAGNA D . Wave and tidal current energy: a review of the current state of research beyond technology[J]. Renewable and Sustainable Energy Reviews, 2016, 58 (16): 1070- 1081.
113 ROY A , AUGER F , DUPRIEZ-ROBIN F , et al. Electrical power supply of remote maritime areas: a review of hybrid systems based on marine renewable energies[J]. Energies, 2018, 11 (4): 1- 27.
114 PÉREZ-COLLAZO C , GREAVES D , IGLESIAS G . A review of combined wave and offshore wind energy[J]. Renewable and Sustainable Energy Reviews, 2015, 42 (3): 141- 153.
115 YANG S, HE G, ZHANG H. Design and development of wave energy- wind energy hybrid power generation system[C]//2nd International Conference of Energy Engineering and Environment Engineering. Hong Kong, China: IEEE Press, 2014: 1-5.
[1] WU Huachun, XIE Siyuan, CHEN Changhao. Design and experiment of cascade PID control for Maglev actuator [J]. Journal of Shandong University(Engineering Science), 2018, 48(4): 88-93.
[2] ZHAO Ye, HE Xiao, ZHOU Donghua. On least squares fault estimation with incorrect measurement noise statistics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 254-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[5] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[6] LAI Xiang . The global domain of attraction for a kind of MKdV equations[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 87 -92 .
[7] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[8] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[9] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[10] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .