Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (3): 76-83.doi: 10.6040/j.issn.1672-3961.0.2020.527

• Electrical Engineering • Previous Articles     Next Articles

Prediction method of power grid emergency supplies under meteorological disasters

Qingfa CHAI1(),Shoujing SUN1,*(),Jifu QIU2,Ming CHEN2,Zhen WEI2,Wei CONG1   

  1. 1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
    2. Qingdao Power Supply Company, State Grid Shandong Electric Power Company, Qingdao 266002, Shandong, China
  • Received:2020-12-17 Online:2021-06-20 Published:2021-06-24
  • Contact: Shoujing SUN E-mail:chaiqingfasdu@163.com;sjingjing@sdu.edu.cn

Abstract:

In order to improve the efficiency of grid emergency repairs, a method for predicting emergency supplies under the conditions of power grid meteorological disasters combining case-based reasoning, deep belief network and deep learning was proposed. Based on meteorological data, power grid maintenance data and geographic environment data, this method was used case-based reasoning to determine the appropriate input and output structure of the prediction model, and different methods was used to process and quantify according to the characteristics of disagreeing input factors. Deep belief networks were used to complete case adaptation, and integrate accident scale information was used to establish a dynamic power grid emergency supplies prediction model. The analysis results showed that the emergency material prediction method proposed in this paper could comprehensively analyze various characteristic factors, and combined the scale of the accident to establish the relationship between the emergency material demand of the power grid, and accurately predicted the material demand for the emergency response of the power grid under the weather disaster. and provided a scientific reference for emergency decision-making of power grids.

Key words: meteorological disaster, characteristic factor, emergency materials prediction, case-based reasoning, deep learning

CLC Number: 

  • TM73

Table 1

Technical status parameter value"

状态分级 赋值范围
一级 0~2.99
二级 3~4.99
三级 5~6.99
四级 7~10

Table 2

Operating defect parameter value table"

线路电压/kV 赋值 运行时间/a 赋值
35 0.608 ≤1 0.321
110 7.010 2~5 3.419
220 2.031 6~10 3.116
330 0.064 11~15 1.532
≥500 0.287 ≥15 1.613

Table 3

Classification standard of relief height and terrain  m"

地形 平地 丘陵 山地 高山
T1 0~20 20~50 50~150 150~250

Table 4

Terrain standard deviation and terrain classification standard"

地形 平地 草地 丘陵 山区
T2 0~10 10~30 30~50 ≥50

Fig.1

Emergency material forecast model structure"

Fig.2

Parallel classification output structure"

Table 5

Correlation coefficient and correlation degree"

R 相关程度
0.8~1.0 极强
0.6~0.79
0.4~0.59 中等
0.2~0.39
0~0.19 极弱

Fig.3

Correlation between material quantity and characteristic factors"

Table 6

Correlation coefficient between the correction value of characteristic factors and the amount of materials"

特征因素 案例组
20 40 60
X1 0.517 0.489 0.431
X1 0.823 0.757 0.771
X2 0.271 0.332 0.282
X2 0.568 0.581 0.578
F1 0.895 0.908 0.893
F2 0.621 0.563 0.561
T1 0.332 0.292 0.399
T2 0.374 0.421 0.506
T3 0.469 0.349 0.472

Table 7

Grid accident case caused by typhoon disaster"

类别 输入因素 输入量 输出因素 预测输出/个 实际需求/个 准确率/%
应急人员 风力修正 2.5 抢修人员 1324 1132 85.52
降雨修正 17.5 后勤人员 275 315 78.21
降雪修正 0 运输人员 212 174 82.32
风向 1.0 其他
应急资源 云量 6.4 安全帽 1552 1319 85.14
温度 16.5 安全带 314 363 86.84
湿度 22.0 安全绳 445 368 83.13
雷击密度 0.022 急救箱 124 93 76.31
主成分F1 4.96 其他
应急工具 主成分F2 2.17 发电机 92 73 79.21
地形T1 11.5 抢修车 103 91 88.32
地形T2 6.2 冲锋舟 13 11 85.71
地形T3 7.1 工器具 4314 3565 82.68
10 kV断线 196处 其他
设备元件 10 kV倒杆 124基 导线 5531 4222 76.38
35 kV断线 1处 仝杆 85 76 89.48
35 kV倒杆 1基 横担 123 151 81.25
110 kV断线 0处 绝缘子 312 156 82.35
110 kV倒杆 2基 其他

Table 8

Forecast results of different networks  %"

模型 d1 d2 d3 d4
DBN 78.60 81.56 84.56 88.73
MLP1 63.31 63.67 64.76 71.55
MLP2 66.73 68.05 73.43 75.48
SVM 75.21 77.03 80.02 83.25
1 余鲲, 杨俊杰, 楼志斌, 等. 基于支持向量机和模糊控制的输电线路覆冰状态评估模型[J]. 电测与仪表, 2016, 53 (21): 82- 88.
doi: 10.3969/j.issn.1001-1390.2016.21.015
YU Kun , YANG Junjie , LOU Zhibin , et al. Trans-mission line icing condition assessment model based on SVM and fuzzy expert system[J]. Electrical Measurement & Instrumentation, 2016, 53 (21): 82- 88.
doi: 10.3969/j.issn.1001-1390.2016.21.015
2 谢敏, 尹一江, 杜余昕, 等. 考虑复杂天气风险源的电力系统可用输电能力评估[J]. 电力自动化设备, 2018, 38 (4): 16- 22.
XIE Min , YIN Yijiang , DU Yuxin , et al. Assessment on available transfer capability considering complex weather risk sources[J]. Electric Power Automation Equipment, 2018, 38 (4): 16- 22.
3 谭磊, 赵永强, 赵留学, 等. 基于分布式光纤的电网台风灾害预警方法研究[J]. 电测与仪表, 2018, 55 (15): 20- 24.
doi: 10.3969/j.issn.1001-1390.2018.15.004
TAN Lei , ZHAO Yongqiang , ZHAO Liuxue , et al. Research on warning method of typhoon disaster based on distributed fiber[J]. Electrical Measurement & Instrumentation, 2018, 55 (15): 20- 24.
doi: 10.3969/j.issn.1001-1390.2018.15.004
4 林潇, 刘洋, 许立雄, 等. 基于系统生存性的骨干网架搜索方法[J]. 电测与仪表, 2019, 56 (12): 49- 56.
LIN Xiao , LIU Yang , XU Lixiong , et al. A method of searching backbone grid based on survivability of power system[J]. Electrical Measurement & Instrumentation, 2019, 56 (12): 49- 56.
5 薛禹胜, 吴勇军, 谢云云, 等. 停电防御框架向自然灾害预警的拓展[J]. 电力系统自动化, 2013, 37 (16): 18- 26.
doi: 10.7500/AEPS20130606010
XUE Yusheng , WU Yongjun , XIE Yunyun , et al. Extension of blackout defense scheme to natural disasters early-warning[J]. Automation of Electric Power Systems, 2013, 37 (16): 18- 26.
doi: 10.7500/AEPS20130606010
6 邓创, 刘友波, 谭洋洋, 等. 考虑网架恢复过程的电力应急资源调度方法[J]. 电网技术, 2017, 41 (11): 3582- 3589.
DENG Chuang , LIU Youbo , TAN Yangyang , et al. Emergency power resource dispatching considering procedure of power grid restoration[J]. Power System Technology, 2017, 41 (11): 3582- 3589.
7 高焕兵, 田国会. 面向配电系统的带电抢修作业机器人[J]. 山东大学学报(工学版), 2015, 45 (1): 45- 53.
GAO Huanbing , TIAN Guohui . Live-working robot for emergency repair of power distribution system[J]. Journal of Shandong University (Engineering Science), 2015, 45 (1): 45- 53.
8 NAJAFI M , ESHGHI K , DULLAERT W . A multi-objective robust optimization model for logistics planning in the earthquake response phase[J]. Transportation Research(Part E: Logistics and Transportation Review), 2013, 49 (1): 217- 249.
doi: 10.1016/j.tre.2012.09.001
9 刘洋, 刘博, 王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47 (4): 1- 6.
LIU Yang , LIU Bo , WANG Feng . Optimization alg-orithm for big data mining based on parameter server framework[J]. Journal of Shandong University (Engineering Science), 2017, 47 (4): 1- 6.
10 RASEKH A , VAFAEINEZHAD A . Developing a GIS based decision support system for resource allocation in earthquake search and rescue operation[J]. Computational Science and its Applications, 2012, 7334, 275- 285.
11 付仲良, 周凡, 逯跃锋. 基于GIS技术的电网应急态势标绘[J]. 山东大学学报(工学版), 2013, 43 (4): 1- 6.
FU Zhongliang , ZHOU Fan , LU Yuefeng . Power grid emergency situation plotting technology based on GIS[J]. Journal of Shandong University (Engineering Science), 2013, 43 (4): 1- 6.
12 许玮, 冀肖彤, 刘海波, 等. 电动汽车应急救援站选址及资源配置[J]. 山东大学学报(工学版), 2017, 47 (6): 115- 120.
XU Wei , JI Xiaotong , LIU Haibo , et al. Location and resource allocation of emergency charging station for expressway electric vehicle[J]. Journal of Shandong University (Engineering Science), 2017, 47 (6): 115- 120.
13 韩畅, 梁博淼, 林振智, 等. 防灾应急电源优化调度的机会约束规划方法[J]. 电力自动化设备, 2018, 38 (3): 147- 154.
HAN Chang , LIANG Bomiao , LIN Zhenzhi , et al. Chance-constrained programming method for optimal scheduling of emergency power source[J]. Electric Power Automation Equipment, 2018, 38 (3): 147- 154.
14 刘文彦, 李欢欢, 谭忠富, 等. 考虑信息准确度的电力灾情侦测设备储备与调配优化模型[J]. 电力系统自动化, 2017, 41 (15): 162- 169.
LIU Wenyan , LI Huanhuan , TAN Zhongfu , et al. Configuration and tuning of sub-feeder protection in distribution network[J]. Automation of Electric Power Systems, 2017, 41 (15): 162- 169.
15 王正新, 刘思峰. 基于Fourier-GM(1, 1)模型的灾害应急物资需求量预测[J]. 系统工程, 2013, 31 (8): 60- 64.
doi: 10.3969/j.issn.1001-2362.2013.08.035
WANG Zhengxin , LIU Sifeng . Forecasting demand of the disaster emergency supplies based on Fourier-GM(1, 1) model[J]. Systems Engineering, 2013, 31 (8): 60- 64.
doi: 10.3969/j.issn.1001-2362.2013.08.035
16 汤继生, 项达冬, 李奇, 等. 基于GIS的电网抢修车辆综合调度技术研究[J]. 电力信息与通信技术, 2016, 14 (2): 123- 127.
TANG Jisheng , XIANG Dadong , LI Qi , et al. Research on GIS-based vehicle's scheduling for power grid emergency maintenance[J]. Electric Power Information and Communication Technology, 2012, 40 (7): 19- 24.
17 SAITO H . Analysis of geometric disaster evaluation model for physical networks[J]. IEEE/ACM Transactions on Networking, 2015, 23 (6): 1777- 1789.
doi: 10.1109/TNET.2014.2339356
18 杨成月. 基于物联网与空间信息技术的电网应急指挥系统[J]. 电网技术, 2013, 37 (6): 1632- 1638.
YANG Chengyue . Power grid emergency command system based on internet of things and spatial information technologies[J]. Power System Technology, 2013, 37 (6): 1632- 1638.
19 周云海, 胡翔勇, 罗斌. 基于案例推理的大停电恢复系统设计[J]. 电力系统自动化, 2007, 31 (18): 87- 90.
doi: 10.3321/j.issn:1000-1026.2007.18.019
ZHOU Yunhai , HU Xiangyong , LUO Bin . Design of a case-based reasoning system for power system restoration[J]. Automation of Electric Power Systems, 2007, 31 (18): 87- 90.
doi: 10.3321/j.issn:1000-1026.2007.18.019
20 杨智宇, 刘俊勇, 刘友波, 等. 基于自适应深度信念网络的变电站负荷预测[J]. 中国电机工程学报, 2019, 39 (14): 4049- 4060.
YANG Zhiyu , LIU Junyong , LIU Youbo , et al. Transformer load forecasting based on adaptive deep belief network[J]. Proceedings of the CSEE, 2019, 39 (14): 4049- 4060.
21 高翔, 陈贵凤, 赵宏雷. 基于数据挖掘的电力信息系统网络安全态势评估[J]. 电测与仪表, 2019, 56 (19): 102- 106.
GAO Xiang , CHEN Guifeng , ZHAO Honglei . Network security situation assessment of power information system based on data mining[J]. Electrical Measurement & Instrumentation, 2019, 56 (19): 102- 106.
22 门永生, 朱朝阳, 于振, 等. 电网重要基础设施自然灾害脆弱性评价研究[J]. 灾害学, 2014, 29 (4): 16- 19.
doi: 10.3969/j.issn.1000-811X.2014.04.003
MEN Yongsheng , ZHU Chaoyang , YU Zhen , et al. Natural disaster vulnerability assessment of important grid infrastructure[J]. Journal of Catastrophology, 2014, 29 (4): 16- 19.
doi: 10.3969/j.issn.1000-811X.2014.04.003
23 文佳昕, 李靖涵, 行瑞星, 等. 顾及地形复杂度的多波束测深数据抽稀算法[J]. 测绘科学技术学报, 2018, 35 (4): 435- 440.
WEN Jiaxin , LI Jinghan , XING Ruixing , et al. A thinning algorithm of multibeam sounding data consi-dering the complexity of seabed terrain[J]. Journal of Geomatics Science and Technology, 2018, 35 (4): 435- 440.
24 何正义, 曾宪华, 曲省卫, 等. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46 (6): 40- 47.
HE Zhengyi , ZENG Xianhua , QU Shengwei , et al. The time series prediction model based on integrated deep learning[J]. Journal of Shandong University (Engineering Science), 2016, 46 (6): 40- 47.
[1] YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21.
[2] LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97.
[3] LIU Shuai, WANG Lei, DING Xutao. Emotional EEG recognition based on Bi-LSTM [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 35-39.
[4] Guoyong CAI,Xinhao HE,Yangyang CHU. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 8-13.
[5] Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117.
[6] Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27,48.
[7] Ji ZHANG,Cui JIN,Hongyuan WANG,Shoubing CHEN. Pedestrian recognition based on singular value decomposition pedestrian alignment network [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 91-97.
[8] Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104.
[9] Zhixiang LIANG,Xiaoming LIU,Ying MU,Yutian LIU. Prediction method of wind power and PV ramp event based on deep learning [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 24-28.
[10] Yutian LIU, Runjia SUN, Hongtao WANG, Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8.
[11] Lizhao LI,Guoyong CAI,Jiao PAN. A microblog rumor events detection method based on C-GRU [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 102-106, 115.
[12] Chengbin ZHANG,Hui ZHAO,Zongyu CAO. The vulnerability mining method for KWP2000 protocol based on deep learning and fuzzing [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 17-22.
[13] Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79.
[14] XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39.
[15] TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[2] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[3] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[4] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[5] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[6] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[7] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[8] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[9] ZHANG Ying,LANG Yongmei,ZHAO Yuxiao,ZHANG Jianda,QIAO Peng,LI Shanping . Research on technique of aerobic granular sludge cultivationby seeding EGSB anaerobic granular sludge[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 56 -59 .
[10] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .