Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 83-90.doi: 10.6040/j.issn.1672-3961.0.2019.262

• Machine Learning & Data Mining • Previous Articles     Next Articles

Image denoising based on 3D shearlet transform and BM4D

Shengnan ZHANG(),Lei WANG*(),Chunhong CHANG,Benli HAO   

  1. College of Computer Science and Technology, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2019-05-28 Online:2020-04-20 Published:2020-04-16
  • Contact: Lei WANG E-mail:644612607@qq.com;wanglei0511@sdut.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61502282);山东省自然科学基金资助项目(ZR2015FQ005);山东省高等学校科技计划资助项目(J18KA362);山东省智慧矿山信息技术重点实验室开放基金资助项目

Abstract:

Aimed at the disadvantage that the traditional block matching denoising method could only deal with two-dimensional images, an image denoising method based on 3D shearlet transform and BM4D(block-matching and 4D filtering) was proposed. This method used 3D shearlet transform to obtain transform domain coefficients, and realized joint filtering in transform domain through hard threshold and Wiener filtering stage. The 3D shearlet transformation was localized through two filtering stages: multi-scale decomposition and directional decomposition. The hard threshold and Wiener filtering were performed, which include grouping, collaborative filtering and aggregation. The 4D transformation of the cubes was based on the local correlationandon-local correlation cubes. The estimated values of each grouped cube were obtained by inverse transformation of 3D shearlet transform, and self-adaptive aggregation was performed at their original positions. PSNR(peak signal to noise ratio) and SSIM(structural similarity) were used as evaluation criteria. The results showed that this method could effectively remove image noise in high noise environment, and effectively improved the visual effect of the image with high accuracy.

Key words: 3D shearlet transform, combined filtering, collaborative filtering, non-local correlation, self-adaptive aggregation

CLC Number: 

  • TP391.4

Fig.1

Comparison of classical denoising images and PSNR"

Fig.2

Partial effect comparisonof Gauss noise"

Fig.3

Partial effect comparison of Rician noise"

Table 1

Comparison of the denoising performance of Gaussian noise"

去噪方法 评价指标 σ/%
1 3 5 7 9 11 13 15 17 19
噪声数据 PSNR 40.00 30.46 26.02 23.10 20.91 19.17 17.72 16.48 15.39 14.42
SSIM 0.97 0.81 0.66 0.53 0.43 0.36 0.30 0.25 0.22 0.19
OB-NLM3D PSNR 42.47 37.57 34.73 32.82 31.42 30.32 29.40 28.61 27.91 27.28
SSIM 0.99 0.97 0.95 0.92 0.90 0.87 0.84 0.82 0.79 0.77
OB-NLM3D-WM PSNR 42.52 37.75 35.01 33.13 31.73 30.61 29.68 28.88 28.18 27.55
SSIM 0.99 0.97 0.95 0.93 0.90 0.88 0.85 0.83 0.80 0.78
ODCT3D PSNR 43.78 37.53 34.89 33.18 31.91 30.90 30.07 29.35 28.73 28.18
SSIM 0.99 0.97 0.95 0.93 0.91 0.89 0.88 0.86 0.85 0.83
PRI-NLM3D PSNR 44.04 38.26 35.51 33.67 32.37 31.29 30.40 29.65 28.99 28.40
SSIM 0.99 0.98 0.96 0.94 0.92 0.90 0.89 0.87 0.85 0.84
BM4D PSNR 44.09 38.39 35.95 34.38 33.21 32.28 31.50 30.82 30.23 29.70
SSIM 0.99 0.98 0.96 0.95 0.93 0.92 0.91 0.90 0.88 0.87
本研究 PSNR 45.00 39.19 36.62 34.94 33.70 32.70 31.88 31.19 30.58 30.05
SSIM 0.99 0.97 0.96 0.94 0.93 0.92 0.90 0.89 0.88 0.87

Table 2

Comparison of the denoising performance of Rician noise."

去噪方法 评价指标 σ/%
1 3 5 7 9 11 13 15 17 19
噪声数据 PSNR 40.00 30.49 26.09 23.20 21.04 19.32 17.88 16.65 15.57 14.60
SSIM 0.97 0.81 0.66 0.53 0.43 0.36 0.30 0.25 0.21 0.18
OB-NLM3D PSNR 42.41 37.45 34.54 32.51 30.97 29.71 28.62 27.64 26.74 25.91
SSIM 0.99 0.97 0.94 0.91 0.88 0.85 0.81 0.78 0.74 0.70
OB-NLM3D-WM PSNR 42.44 37.54 34.66 32.61 31.01 29.69 28.53 27.50 26.57 25.71
SSIM 0.99 0.97 0.95 0.92 0.88 0.85 0.81 0.77 0.74 0.70
ODCT3D PSNR 42.96 37.38 34.70 32.90 31.53 30.41 29.48 28.67 27.95 27.30
SSIM 0.99 0.97 0.95 0.93 0.90 0.88 0.86 0.84 0.82 0.80
PRI-NLM3D PSNR 43.97 38.19 35.34 33.37 31.94 30.74 29.75 28.88 28.10 27.39
SSIM 0.99 0.98 0.96 0.94 0.91 0.89 0.87 0.85 0.82 0.80
BM4D PSNR 44.08 38.34 35.83 34.17 32.89 31.82 30.90 30.06 29.29 28.57
SSIM 0.99 0.98 0.96 0.94 0.93 0.91 0.89 0.88 0.86 0.84
本研究 PSNR 45.00 39.18 36.60 34.88 33.59 32.54 31.66 30.91 30.23 29.59
SSIM 0.99 0.97 0.96 0.94 0.93 0.91 0.90 0.89 0.87 0.85
1 陶永鹏, 景雨, 顼聪. 基于分组字典与变分模型的图像去噪算法[J]. 计算机应用, 2019, 39 (2): 551- 555.
TAO Yongpeng , JING Yu , XU Cong . Image denoising algorithm based on grouped dictionary and variational model[J]. Computer Application, 2019, 39 (2): 551- 555.
2 SUN Yongkui , TAN Wen , CHEN Tongwen . A method to remove chattering alarms using median filters[J]. ISA Transactions, 2018, 73 (1): 201- 207.
3 李志良, 苏佳, 高丽慧, 等. 基于维纳滤波的主动噪声控制实验研究[J]. 科技风, 2018, (15): 216- 217.
LI Zhiliang , SU Jia , GAO Lihui , et al. Experimental study on active noise control based on wiener filtering[J]. Technology Wind, 2018, (15): 216- 217.
4 陈波, 丁宁, 边境, 等. BM3D去噪算法在仪表图像识别中的应用[J]. 浙江电力, 2019, 38 (3): 54- 58.
CHEN Bo , DING Ning , BIAN Jing , et al. Application of BM3D denoising algorithms in instrument image recognition[J]. Zhejiang Eelectric Power, 2019, 38 (3): 54- 58.
5 张雯雯, 韩裕生. 基于非局部自相似性的低秩稀疏图像去噪[J]. 计算机应用, 2018, 38 (9): 2696- 2700.
ZHANG Wenwen , HAN Yusheng . Low rank sparse image denoising based on non-local self-similarity[J]. Computer Application, 2018, 38 (9): 2696- 2700.
6 徐苏, 周颖玥. 基于图像分割的非局部均值去噪算法[J]. 计算机应用, 2017, 37 (7): 2078- 2083.
XU Su , ZHOU Yingyue . Non-local mean denoising based on image segmentation[J]. Computer Application, 2017, 37 (7): 2078- 2083.
7 刘宇, 陈胜. 医学图像分割方法综述[J]. 电子科技, 2017, 30 (8): 169- 172.
LIU Yu , CHEN Sheng . Summary of medical image segmentation methods[J]. Electronic Technology, 2017, 30 (8): 169- 172.
8 王瑞, 张友纯. 新阈值函数下的小波阈值去噪[J]. 计算机工程与应用, 2013, 49 (15): 215- 218.
WANG Rui , ZHANG Youchun . Wavelet threshold denoising under new threshold function[J]. Computer Engineering and Application, 2013, 49 (15): 215- 218.
9 MURAMATSU S , FURUYA K , YUKI N . Multidimensional nonseparable oversampled lapped transforms: theory and design[J]. IEEE Transactions on Signal Processing, 2017, 65 (5): 1251- 1264.
10 段立娟, 武春丽, 恩擎, 等. 基于小波域的深度残差网络图像超分辨率算法[J]. 软件学报, 2019, 30 (4): 941- 953.
DUAN Lijuan , WU Chunli , EN Qing , et al. Super- resolution algorithm of depth residual network image based on wavelet domain[J]. Journal of Software, 2019, 30 (4): 941- 953.
11 SUN L , JENO B , ZHENG Y , et al. A novel weighted cross total variation method for hyperspectral image mixed denoising[J]. IEEE Access, 2017, 6 (1): 172- 188.
12 FAN F , MA Y , LI C , et al. Hyperspectral image denoising with superpixel segmentation and low-rank representation[J]. Information Sciences, 2017, 397, 48- 68.
13 马红强, 马时平, 许悦雷, 等. 基于改进栈式稀疏去噪自编码器的图像去噪[J]. 计算机工程与应用, 2018, 54 (4): 199- 204.
MA Hongqiang , MA Shiping , XU Yuelei , et al. Image denoising based on improved stack sparse denoising self-encoder[J]. Computer Engineering and Application, 2018, 54 (4): 199- 204.
14 肖佳, 张俊华, 梅礼晔. 基于改进BM3D算法的椒盐噪声去噪[J]. 计算机工程与应用, 2018, 54 (21): 170- 175.
XIAO Jia , ZHANG Junhua , MEI Liye . Denoising of salt and pepper noise based on improved BM3D algorithm[J]. Computer Engineering and Application, 2018, 54 (21): 170- 175.
15 LIN Tinglan , TUNG Kunhsien , FANG Guanjie , et al. Optimized backlight power saving algorithm using joint power-PSNR characteristics among multiple frames[J]. Journal of Display Technology, 2016, 12 (12): 1506- 1503.
16 ZHAO Tiesong , WANG Jiheng . SSIM-based coarse-grain scalable wideo coding[J]. IEEE Transactions on Broadcasting, 2015, 2 (61): 210- 221.
17 WELINTON C, TIAGO N, GABRIEL B, et al. Improving non-local video denoising with local binary patterns and image quantization[C]// 2016 29th SIBGRAPI Conference on Graphics. Massachusetts, USA: Patterns and Images, 2016: 1-9.
18 LIN Xiangbo, QIU Tianshuang. Denoise MRI images using sparse 3D transformation domain collaborative filtering[C]// 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai: IEEE, 2011: 233-236.
19 杨戴天杙. PRI_NLM3D降噪算法在CBCT三维图像中的应用研究[J]. 全国射线数字成像与CT新技术, 2012, 10 (8): 99- 108.
YANG Daitianyi . Application of PRI_NLM3D denoising algorithms in CBCT 3D images[J]. New National Radiographic Digital Imaging and CT Technology, 2012, 10 (8): 99- 108.
20 XU Ping , CHEN Bingqiang , XUE Lingyun , et al. A new MNF-BM4D denoising algorithm based on guided filtering for hyperspectral images[J]. ISA Transactions, 2019, 2 (3): 1- 10.
[1] Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 21-27,48.
[2] Yun HU,Shu ZHANG,Hui LI,Kankan SHE,Jun SHI. Recommendation algorithm based on trust network reconfiguration [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 42-46.
[3] HUANG Dan, WANG Zhihai, LIU Haiyang. A local collaborative filtering algorithm based on ranking recommendation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 29-36.
[4] LIN Yaojin, ZHANG Jia, LIN Menglei, WANG Juan. A method of collaborative filtering recommendation based on fuzzy information entropy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 13-20.
[5] LI Shuo, SHI Yuliang. The method of spot cluster recommendation in location-based social networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 44-50.
[6] PANG Juntao, ZHANG Hui, YANG Chunming, LI Bo, ZHAO Xujian. Multi-criteria collaborative filtering algorithm based on probabilistic matrix factorization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 65-73.
[7] ZHANG Jia, LIN Yaojin, LIN Menglei, LIU Jinghua, LI Huizong. Entropy-based collaborative filtering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 43-50.
[8] CHEN Dawei, YAN Zhao*, LIU Haoyan. Overfitting phenomenon  of  the series of single value decomposition algorithms in rating prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 15-21.
[9] SUN Yuanshuai, CHEN Yao, LIU Xiangrong, CHEN Ke, LIN Chen. Recommendation algorithm based on hierarchical item similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 8-14.
[10] LI Gai1,2,3, LI Lei2,3. A  new algorithm of cold-start in a collaborative filtering system [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 11-17.
[11] WANG Ai-guo, LI Lian*, YANG Jing, CHEN Gui-lin. An algorithm based on Bayesian network for web page recommendation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 137-142.
[12] MAO Qin-jiao1, FENG Bo-qin1, LI Yan1,2, PAN Shan-liang3. A novel users’ interests prediction approach based on concept lattice [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[2] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[3] XU Li-li,JI Zhong,XIA Ji-mei . The optimum algorithm for the container loading problem with homogeneous cargoes[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 14 -17 .
[4] PAN Duo-tao,LIU Gui-ping,LIU Chang-feng . Screening of microbe producing flocculant and optimizationon its cultural conditions[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 99 -103 .
[5] CHEN Peng, HU Wen-Rong, FEI Hai-Yan. Screening of a denitrifying bacterium strain LZ-14 and its nitrogen removal characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 133 -138 .
[6] HANG Guang-qing,KONG Fan-yu,LI Da-xing, . Efficient algorithm with resistance to simple power analysis on Koblitz curves[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 78 -80 .
[7] WANG Kai,SUN Feng-zhong,ZHAO Yuan-bin,GAO Ming,GAO Shan . Mathematical model and numerical simulation of the air inlet flowfield of a natural-draft cooling tower[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 13 -17 .
[8] JIA Chao,ZHAO Jian-yu,XU Bang-shu,YUE Chang-cheng,LI Shu-chen . Research on rock soil liquefaction of the Qingshui railway tunnel under dynamic vibration load[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 83 -87 .
[9] . H2 white noise estimation for linear continuous-time systems with delayed measurements[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 56 -61 .
[10] HAO Ming-hui,WANG Xi-ping,WANG Min,ZHOU Shen-jie .

The solution of a oneedge crack of a finite plate with the influence of  couple stress in a uniform tension field

[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 92 -95 .