Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (1): 72-81.doi: 10.6040/j.issn.1672-3961.0.2019.201

• Electrical Engineering • Previous Articles     Next Articles

Discussion on emergency control of central air conditioner at large receiving-end grid to cope with HVDC blocking fault

Meng LIU1(),Dingyi CHENG1,Wen ZHANG2,Hengxu ZHANG2,Kuan LI1,Guohui ZHANG1,Jianjun SU1   

  1. 1. State Grid Shandong Electric Power Research Institute, Jinan 250002, Shandong, China
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
  • Received:2019-05-06 Online:2020-02-20 Published:2020-02-14
  • Supported by:
    国网山东省电力公司科技项目(2017A-58);国家自然科学基金资助项目(51507094)

Abstract:

The central air conditioner had the potential to cope with the DC blocking fault through emergency control, ensure the safe and stable operation of the receiving-end grid after suffering from large power shortage. The basic principle of the central air conditioner was introduced. On this basis, the physical model of the central air conditioner which included central air conditioning unit, temperature change of frozen inflow and outflow water, heat exchange between the cooling water of the fan coil and the room, indoor average temperature change as well as the proportion of the room in the open state were established. An emergency control strategy for direct power cut and flexible recovery of central air conditioning was proposed. The feasibility of the emergency control of the central air conditioning system in response to stability control and under frequency/voltage load shedding were discussed respectively. The characteristics of the central air conditioning emergency control were simulated. The emergency control of central air conditioner was simulated after HVDC blocking fault occurs in Shandong power grid, verifying that the power grid frequency could be increased by 0.04 Hz when central air conditioners accounted for 1% of the total load in Shandong power grid.

Key words: load control, central air conditioner, emergency control, HVDC, bi-polar block fault

CLC Number: 

  • TM732

Fig.1

Principle of central air conditioning system"

Table 1

Power of each equipment for the three major central air-conditioning manufacturers kW"

厂家 单台主机额定功率 单台冷冻泵额定功率 单台冷却泵额定功率 单台室内风机额定功率 单台冷却塔风机额定功率
约克 350~700 20~110 20~110 0.3左右 20
特灵 100~1 000 100左右 100左右 0.1左右 2~10
开利 100~1 000 20~110 20~110 0.1左右 2~10

Table 2

Regional distribution of central air-conditioners maintained by Trane in Shandong power grid 台"

城市 螺杆机数量 离心机数量 总数量
济南 104 83 187
青岛 42 69 111
烟台 18 33 51
潍坊 33 20 53
临沂 8 0 8
日照 16 9 25
威海 30 19 49
东营 46 11 57
淄博 18 10 28
枣庄 7 4 11
聊城 13 18 31
德州 42 11 53
莱芜 4 4 8
菏泽 15 2 17
滨州 10 10 20
泰安 13 18 31
济宁 52 34 86

Fig.2

Power shock at normal starting of central air conditioner"

Fig.3

Architecture for load shedding control system after considering central air conditioner"

Table 3

Parameters of building and central air conditioner"

Cw, l/
(W·℃-1)
Cw, e/
(J·℃-1)
c/
(J·kg-1·℃-1)
v/
(kg·s-1)
Kex/
(W·℃-1)
Cair/
(J·℃-1)
Kair/
(W·℃-1)
4.96×104 4.96×107 4 200 39.4 6.2×104 1.49×107 4.96×104

Fig.4

Normal starting of central air conditioner"

Fig.5

Simulation of emergency control of central air conditioner"

Fig.6

Diagram of simplified Shandong power grid"

Fig.7

Frequency response results of DC bipolar block"

Fig.8

Frequency response results of DC bipolar block based on decentralized control"

Fig.9

Indoor temperature"

1 刘振亚. 中国电力与能源[M]. 北京: 中国电力出版社, 2015.
2 汤涌, 郭强, 周勤勇, 等. 特高压同步电网安全性论证[J]. 电网技术, 2016, 40 (1): 97- 104.
TANG Yong , GUO Qiang , ZHOU Qinyong , et al. Security evaluation for UHV synchronized power grid[J]. Power System Technology, 2016, 40 (1): 97- 104.
3 CALLAWAY D S , HISKENS I A . Achieving controllability of electric loads[J]. Proceedings of the IEEE, 2011, 99 (1): 184- 199.
doi: 10.1109/JPROC.2010.2081652
4 国家电力监管委员会安全监管局, 国家电力监管委员会政策法规部, 国务院法制办公室工交商事法制司. 《电力安全事故应急处置和调查处置条例》释义[M]. 北京: 中国电力出版社, 2011.
5 SHORT J A , INFIELD D G , FRERIS L L . Stabilization of grid frequency through dynamic demand control[J]. IEEE Trans on Power Systems, 2007, 22 (3): 1284- 1293.
doi: 10.1109/TPWRS.2007.901489
6 XU Z , QSTERGAARD J , TOGEBY M . Demand as frequency controlled reserve[J]. IEEE Trans on Power Systems, 2011, 26 (3): 1062- 1071.
doi: 10.1109/TPWRS.2010.2080293
7 GARCIA A M , BOUFFARD F , KIRSCHEN D S . De-centralized demand side contribution to primary frequency control[J]. IEEE Trans on Power Systems, 2011, 26 (1): 411- 419.
doi: 10.1109/TPWRS.2010.2048223
8 ZHAO C , TOPCU U , LOW S H . Optimal load control via frequency measurement and neighborhood area communi-cation[J]. IEEE Trans on Power Systems, 2013, 28 (4): 3576- 3587.
doi: 10.1109/TPWRS.2013.2261096
9 ZHAO C , TOPCU U , LI N , et al. Design and stability of load-side primary frequency control in power systems[J]. IEEE Trans on Automatic Control, 2014, 59 (5): 1177- 1189.
doi: 10.1109/TAC.2014.2298140
10 刘萌, 褚晓东, 张文, 等. 计及网络约束的源-荷协同频率控制策略[J]. 电工技术学报, 2016, 31 (6): 195- 205.
doi: 10.3969/j.issn.1000-6753.2016.06.023
LIU Meng , CHU Xiaodong , ZHANG Wen , et al. Cooperative generation-load frequency control strategy accounting for power network constraints[J]. Transactions of China Electrotechnical Society, 2016, 31 (6): 195- 205.
doi: 10.3969/j.issn.1000-6753.2016.06.023
11 刘萌, 张岩, 王大鹏, 等. 电力系统大功率缺额下空调负荷群集的分散自律控制策略[J]. 电网技术, 2017, 41 (9): 3050- 3057.
LIU Meng , ZHANG Yan , WANG Dapeng , et al. Decentralized self-discipline control strategy of air-conditioning load group after power system suffering from large power shortage[J]. Power System Technology, 2017, 41 (9): 3050- 3057.
12 张志丹, 黄小庆, 曹一家, 等. 电网友好型空调负荷的主动响应策略研究[J]. 中国电机工程学报, 2014, 34 (25): 4207- 4218.
ZHANG Zhidan , HUANG Xiaoqing , CAO Yijia , et al. Research on active response policy for grid friendly air conditioning load[J]. Proceedings of the CSEE, 2014, 34 (25): 4207- 4218.
13 曹世光, 李卫东, 柳焯, 等. 计及直接负荷控制的动态优化调度模型[J]. 中国电机工程学报, 1998, 18 (3): 160- 162.
CAO Shiguang , LI Weidong , LIU Zhuo , et al. Model of dynamic optimal dispatch considering direct load control[J]. Proceedings of the CSEE, 1998, 18 (3): 160- 162.
14 CHU W C , CHEN B K , FU C K . Scheduling of direct load control to minimize load reduction for a utility suffering from generation shortage[J]. IEEE Transactions on Power Systems, 1993, 8 (4): 1525- 1530.
doi: 10.1109/59.260955
15 RUIZ N , COBELO I , OYARZABAL J . A direct load control model for virtual power plant management[J]. IEEE Transactions on Power Systems, 2009, 24 (2): 959- 966.
doi: 10.1109/TPWRS.2009.2016607
16 高赐威, 李倩玉, 李扬. 基于DLC的空调负荷双层优化调度和控制策略[J]. 中国电机工程学报, 2014, 34 (10): 1546- 1554.
GAO Ciwei , LI Qianyu , LI Yang . Bi-level optimal dispatch and control strategy for air-conditioning load based on direct load control[J]. Proceedings of the CSEE, 2014, 34 (10): 1546- 1554.
17 刘萌, 梁雯, 张岩, 等. 计及空调负荷群控制的源-荷协同优化调度模型[J]. 电网技术, 2017, 41 (4): 1230- 1236.
LIU Meng , LIANG Wen , ZHANG Yan , et al. Cooperative generation-load optimal dispatching model considering air-conditioning load group control[J]. Power System Technology, 2017, 41 (4): 1230- 1236.
18 周磊, 李扬, 高赐威. 聚合空调负荷的温度调节方法改进及控制策略[J]. 中国电机工程学报, 2014, 34 (31): 5579- 5589.
ZHOU Lei , LI Yang , GAO Ciwei . Improvement of tem-perature adjusting method for aggregated air-conditioning loads and its control strategy[J]. Proceedings of the CSEE, 2014, 34 (31): 5579- 5589.
19 YAO L , LU H R . A two-way direct control of central air-conditioning load via the internet[J]. IEEE Trans. on Power Delivery, 2009, 24 (1): 240- 248.
doi: 10.1109/TPWRD.2008.923813
20 徐青山, 吴枭, 杨斌. 考虑状态差异性聚类的空调负荷直接负荷控制动态优化方法[J]. 电力系统自动化, 2016, 40 (14): 33- 42.
doi: 10.7500/AEPS20151123004
XU Qingshan , WU Xiao , YANG Bin . Dynamic optimization method of direct load control for air-conditioning load con-sidering status diversity clustering[J]. Automation of Electric Power Systems, 2016, 40 (14): 33- 42.
doi: 10.7500/AEPS20151123004
21 管国兵, 辛洁晴. 空调负荷群分组控制方法[J]. 电力系统自动化, 2016, 40 (20): 40- 46.
doi: 10.7500/AEPS20150822002
GUAN Guobing , XIN Jieqing . Grouping control method for air conditioning load[J]. Automation of Electric Power Systems, 2016, 40 (20): 40- 46.
doi: 10.7500/AEPS20150822002
22 李天阳, 赵兴旺, 肖文举. 面向峰谷平衡的商业楼宇空调负荷调控技术[J]. 电力系统自动化, 2015, 39 (17): 96- 102.
doi: 10.7500/AEPS20150311009
LI Tianyang , ZHAO Xingwang , XIAO Wenju . Regulation technology of air-conditioning load in commercial buildings for balance of power grid peak and valley[J]. Automation of Electric Power Systems, 2015, 39 (17): 96- 102.
doi: 10.7500/AEPS20150311009
23 王怡岚, 童亦斌, 黄梅, 等. 基于需求侧响应的空调负荷虚拟储能模型研究[J]. 电网技术, 2017, 41 (2): 394- 401.
WANG Yilan , TONG Yibin , HUANG Mei , et al. Research on virtual energy storage model of air conditioning loads based on demand response[J]. Power System Technology, 2017, 41 (2): 394- 401.
24 杨永标, 颜庆国, 徐石明, 等. 公共楼宇空调负荷参与电网虚拟调峰的思考[J]. 电力系统自动化, 2015, 39 (17): 103- 107.
doi: 10.7500/AEPS20150331023
YANG Yongbiao , YAN Qingguo , XU Shiming , et al. Thinking of public building air-conditioning load partici-pating in grid with virtual peak clipping[J]. Automation of Electric Power Systems, 2015, 39 (17): 103- 107.
doi: 10.7500/AEPS20150331023
25 戚野白, 王丹, 贾宏杰, 等. 基于局部终端温度调节的中央空调需求响应控制策略[J]. 电力系统自动化, 2015, 39 (17): 82- 88.
doi: 10.7500/AEPS20150409001
QI Yebai , WANG Dan , JIA Hongjie , et al. Demand response control strategy for central air-conditioner based on temperature adjustment of partial terminal devices[J]. Automation of Electric Power Systems, 2015, 39 (17): 82- 88.
doi: 10.7500/AEPS20150409001
26 徐青山, 杨辰星, 颜庆国. 计及规模化空调热平衡惯性的电力负荷日前削峰策略[J]. 电网技术, 2016, 40 (1): 156- 163.
XU Qingshan , YANG Chenxing , YAN Qingguo . Strategy of day-ahead power peak load shedding considering thermal equilibrium inertia of large-scale air conditioning loads[J]. Power System Technology, 2016, 40 (1): 156- 163.
27 辛洁晴, 吴亮. 商务楼中央空调周期性暂停分档控制策略[J]. 电力系统自动化, 2013, 37 (5): 49- 54.
XIN Jieqing , WU Liang . Hierarchical strategies for duty cycling control of air conditioners in business buildings[J]. Automation of Electric Power Systems, 2013, 37 (5): 49- 54.
28 李恒强, 徐石明, 陈璐, 等. 楼宇中央空调柔性调控参与电网调峰实证研究[J]. 南方电网技术, 2016, 10 (10): 51- 58.
LI Hengqiang , XU Shiming , CHEN Lu , et al. Empirical research on flexible control of central air-conditioning of buildings for peak load regulation[J]. Southern Power System Technology, 2016, 10 (10): 51- 58.
29 王蓓蓓, 朱峰, 嵇文路, 等. 中央空调降负荷潜力建模及影响因素分析[J]. 电力系统自动化, 2016, 40 (19): 44- 52.
doi: 10.7500/AEPS20150917007
WANG Beibei , ZHU Feng , JI Wenlu , et al. Load cutting potential modeling of central air-conditioning and analysis on influencing factors[J]. Automation of Electric Power Systems, 2016, 40 (19): 44- 52.
doi: 10.7500/AEPS20150917007
30 刘开欣, 王丹, 贾宏杰, 等. 基于参数序列化的中央空调变负载率调节控制策略研究[J]. 电网技术, 2017, 41 (9): 3041- 3049.
LIU Kaixin , WANG Dan , JIA Hongjie , et al. Research on an variable load rate control strategy for central air-conditioner based on parameter serialization[J]. Power System Technology, 2017, 41 (9): 3041- 3049.
31 艾欣, 赵阅群, 周树鹏. 空调负荷直接负荷控制虚拟储能特性研究[J]. 中国电机工程学报, 2016, 36 (6): 1596- 1603.
AI Xin , ZHAO Yuequn , ZHOU Shupeng . Study on virtual energy storage features of air conditioning load direct load control[J]. Proceedings of the CSEE, 2016, 36 (6): 1596- 1603.
32 朱宇超, 王建学, 曹晓宇. 中央空调负荷直接控制策略及其可调度潜力评估[J]. 电力自动化设备, 2018, 38 (5): 227- 234.
ZHU Yuchao , WANG Jianxue , CAO Xiaoyu . Direct control strategy of central air-conditioning load and its schedulable potential evaluation[J]. Electric Power Automation Equipment, 2018, 38 (5): 227- 234.
33 CALLAWAY D S . Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy[J]. Energy Conversion and Management, 2009, 50 (5): 1389- 1400.
doi: 10.1016/j.enconman.2008.12.012
34 MATHIEU J L , KOCH S , CALLAWAY D S . State estimation and control of electric loads to manage real-time energy imbalance[J]. IEEE Transactions on Power Systems, 2013, 28 (1): 430- 440.
35 BASHASH S , FATHY H K . Modeling and control of aggregate air conditioning loads for robust renewable power management[J]. IEEE Trans on Control Systems Technology, 2013, 21 (4): 1318- 1327.
doi: 10.1109/TCST.2012.2204261
[1] Xueping GU, Chao YANG, Haiping LIANG, Yuanbo WANG, Shaoyan LI. Optimization method for parallel coordination restoration strategy of asynchronous power grid [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 9-16.
[2] Meng LIU,Taoyang XU,Changgang LI,Yue WU,Zhi WANG,Fangfang SHI,Jianjun SU,Guohui ZHANG,Kuan LI. Optimization of emergency load shedding of receiving-end power grid based on Particle Swarm Optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 120-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[2] KONG Xiang-zhen,LIU Yan-jun,WANG Yong,ZHAO Xiu-hua . Compensation and simulation for the deadband of the pneumatic proportional valve[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 99 -102 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[5] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[6] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[7] WANG Li-ju,HUANG Qi-cheng,WANG Zhao-xu . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(6): 51 -56 .
[8] Yue Khing Toh1, XIAO Wendong2, XIE Lihua1. Wireless sensor network for distributed target tracking: practices via real test bed development[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 50 -56 .
[9] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[10] WANG Pei,ZHANG Yanning,SHEN Jiazhen,LIU Juncheng, . Application of information measure and support vector machine in image edge detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 95 -99 .