Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (4): 108-114.doi: 10.6040/j.issn.1672-3961.0.2018.476

• Mechanical, Energy and Power Engineering • Previous Articles     Next Articles

Non-equilibrium molecular dynamics simulation of the influence of nanostructures on water infiltration characteristics

Haowei HU1,2(),Shuang LIU1,Tingyong FANG1   

  1. 1. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, China
    2. Key Laboratory of Thermo-Fluid Science and Engineering of MOE, Xi′an Jiaotong University, Xi′an 710049, Shanxi, China
  • Received:2018-11-06 Online:2019-08-20 Published:2019-08-06
  • Supported by:
    国家自然科学基金资助项目(51806003);安徽省自然科学基金资助项目(1808085QE164);安徽省高校自然科学研究基金资助项目(KJ2017A488);热流科学与工程教育部重点实验室(西安交通大学)开放基金

Abstract:

To clarify the law of fluid flow in a complex nanochannel, the molecular dynamics method was employed to investigate the infiltration characteristic of pressure-driven droplet into the nanochannel with different wettability. The nonequilibrium molecular dynamics model of liquid water/nanochannel with different wettability was established to study effects of driving pressure, surface wettability, and nanoscale roughness on infiltration characteristics. The simulation results indicated that droplets more rapidly entered into the hydrophilic nanochannel than the hydrophobic nanochannel under an identical driving pressure. And compared to the smooth nanochannel, effects of the surface tension of the droplet was obvious due to the structures of nanoscale roughness. Simultaneously, it could be found that the nanoscale roughness had a certain impact on both droplet infiltration velocity and density profiles. As the distance between the nanoscale roughness and nanochannel entrance decreased, the flow resistance in the infiltration process of droplets improved. It suggested that the volumetric flux of the infiltration of water into the nanochannels was reduced. The findings could provide a theoretical basis for uncovering the transport mechanism of liquid water in the complex nanochannel.

Key words: infiltration characteristic, surface tension, nanostructure, molecular dynamics, wettability

CLC Number: 

  • TK121

Table 1

Values of coefficients in SW model"

系数ABpqγaθ0/(°)λ
数值7.050.604.000.001.201.80109.4723.15

Fig.1

Contact angle of different wettability surfaces"

Fig.2

Geometric model of nanoscale droplet infiltration process"

Fig.3

Dynamic infiltration processes into hydrophobic and hydrophilic nanochannels at different driving pressures"

Fig.4

Number of water molecules inside nanochannels with different wettiablity"

Fig.5

Number density profiles of the infiltration of water into the nanochannels in the z-direction"

Fig.6

Three models of nanochannels with different nanoscale roughness"

Fig.7

Dynamic infiltration processes into nanochannels with different nanoscale roughness at the driving pressure of 50 MPa"

Fig.8

Number of water molecules inside different nanostructured channels"

Fig.9

Number density profiles of infiltration of water into the nanochannels in z-direction with different models"

Fig.10

Volumetric flux of the infiltration of water into the nanochannels with different models on unit area"

1 徐超, 何雅玲, 王勇. 纳米通道滑移流动的分子动力学模拟研究[J]. 工程热物理学报, 2005, 26 (6): 912- 914.
doi: 10.3321/j.issn:0253-231X.2005.06.004
XU Chao , HE Yaling , WANG Yong . Molecular dynamics studies of velocity slip phenomena in a nanochannel[J]. Journal of Engineering Thermophysics, 2005, 26 (6): 912- 914.
doi: 10.3321/j.issn:0253-231X.2005.06.004
2 向恒, 姜培学, 刘其鑫, 等. 纳米通道内液体流动的分子动力学研究[J]. 工程热物理学报, 2008, 29 (9): 1557- 1560.
doi: 10.3321/j.issn:0253-231X.2008.09.032
XIANG Heng , JIANG Peixue , LIU Qixin , et al. Molecular dynamics investigation of fluid flow in nanochannels[J]. Journal of Engineering Thermophysics, 2008, 29 (9): 1557- 1560.
doi: 10.3321/j.issn:0253-231X.2008.09.032
3 FENG J , LIAO Q , ZHU X , et al. Molecular dynamics simulation of injection of polyethylene fluid in a variable cross-section nano-channel[J]. Chinese Science Bulletin, 2011, 56 (17): 1848- 1856.
doi: 10.1007/s11434-010-4317-7
4 胡海豹, 何强, 鲍路瑶, 等. 二级规则微结构对低表面能纳米通道内微流动的影响[J]. 机械工程学报, 2014, 50 (12): 165- 170.
HU Haibao , HE Qiang , BAO Luyao , et al. Effect of secondary regular microstructure on the micro-flows in nano-channel with low surface energy[J]. Journal of Mechanical Engineering, 2014, 50 (12): 165- 170.
5 WANG L , WU H , WANG F . Efficient transport of droplet sandwiched between saw-tooth plates[J]. Journal of Colloid and Interface Science, 2016, 462, 280- 287.
doi: 10.1016/j.jcis.2015.09.071
6 HU H W , TANG G H , NIU D . Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery[J]. Scientific Reports, 2016, 6, 27274-1- 27274-10.
7 李云, 胡浩威. 润湿性对纳米多孔陶瓷膜输运性能的影响[J]. 化工学报, 2017, 68 (9): 3474- 3481.
LI Yun , HU Haowei . Effect of wettability on nanoporous ceramic membrane for condensate transport performance[J]. CIESC Journal, 2017, 68 (9): 3474- 3481.
8 PU J H , LI G X , TANG G H , et al. The effect of chemical functionalisation on nanoporous energy absorption system[J]. Molecular Simulation, 2017, 43 (17): 1442- 1447.
doi: 10.1080/08927022.2017.1319057
9 CHEN C , CHEN Y F , SHA J J , et al. Molecular dynamics simulation of ion transportation through graphene nanochannels[J]. Journal of Southeast University, 2017, 33 (2): 171- 176.
10 张忠强, 李冲, 刘汉伦, 等. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究[J]. 物理学报, 2018, 67 (5): 056102-1- 056102-8.
ZHANG Zhongqiang , LI Chong , LIU Hanlun , et al. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure[J]. Acta Physica Sinica, 2018, 67 (5): 056102-1- 056102-8.
11 ZHANG K , WANG F H , LU Y J . Molecular dynamics simulation of continuous nanoflow transport through the uneven wettability channel[J]. AIP Advances, 2018, 8 (1): 015111-1- 015111-10.
12 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学[J]. 物理学报, 2017, 66 (20): 193- 200.
WANG Sheng , XU Jinliang , ZHANG Longyan . Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nano channel[J]. Acta Physica Sinica, 2017, 66 (20): 193- 200.
13 XIE H , LIU C . Molecular dynamics simulations of gas flow in nanochannel with a Janus interface[J]. AIP Advances, 2012, 2 (4): 042126-1- 042126-8.
14 BAO F B , HUANG Y L , QIU L M , et al. Applicability of molecular dynamics method to the pressure-driven gas flow in finite length nano-scale slit pores[J]. Molecular Physics, 2015, 113 (6): 561- 569.
doi: 10.1080/00268976.2014.960495
15 BAO F B , HUANG Y L , ZHANG Y H , et al. Investigation of pressure-driven gas flows in nanoscale channels using molecular dynamics simulation[J]. Microfluidics & Nanofluidics, 2015, 18 (5/6): 1075- 1084.
16 韩强, 祁影霞. 纳米通道内气体流动特性的分子动力学研究[J]. 能源工程, 2017, (6): 14- 19.
HAN Qiang , QI Yingxia . Molecular dynamics investigation of gas flow in nanochannel[J]. Energy Engineering, 2017, (6): 14- 19.
17 王禹贺, 祁影霞, 韩强. 壁面粗糙度及弯曲纳米通道对气体流动特性影响的分子动力学研究[J]. 制冷技术, 2018, 38 (1): 12- 18.
doi: 10.3969/j.issn.2095-4468.2018.01.103
WANG Yuhe , QI Yingxia , HAN Qiang . Molecular dynamics study on influences of wall roughness and curved nanochannel on gas flow characteristics[J]. Chinese Journal of Refrigeration Technology, 2018, 38 (1): 12- 18.
doi: 10.3969/j.issn.2095-4468.2018.01.103
18 张冉, 谢文佳, 常青, 等. 纳米通道内气体剪切流动的分子动力学模拟[J]. 物理学报, 2018, 67 (8): 084701-1- 084701-11.
ZHANG Ran , XIE Wenjia , CHANG Qing , et al. Molecular dynamics simulations of surface effects on Couette gas flows in nanochannels[J]. Acta Physica Sinica, 2018, 67 (8): 084701-1- 084701-11.
19 STILLINGER F H , WEBER T A . Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31 (8): 5262- 5271.
doi: 10.1103/PhysRevB.31.5262
20 SOLVEYRA E G , DE LA LLAVE E , SCHERLIS D A , et al. Melting and crystallization of ice in partially filled nanopores[J]. The Journal of Physical Chemistry B, 2011, 115 (48): 14196- 14204.
doi: 10.1021/jp205008w
21 MOORE E B , MOLINERO V J . Growing correlation length in supercooled water[J]. The Journal of Chemical Physics, 2009, 130 (24): 244505-1- 244505-12.
22 MOLINERO V , MOORE E B . Water modeled as an intermediate element between carbon and silicon[J]. Journal of Physical Chemistry B, 2009, 113 (13): 4008- 4016.
doi: 10.1021/jp805227c
23 MOORE E B , DE LA LLAVE E , WELKE K , et al. Freezing, melting and structure of ice in a hydrophilic nanopore[J]. Physical Chemistry Chemical Physics, 2010, 12 (16): 4124- 4134.
doi: 10.1039/b919724a
[1] BAI Yanyan, CAO Yuexin, ZHANG Xianxi, ZHANG Luge, SUN Dezhi, YAN Hui, ZHANG Chong. The influence of SDS on C-343 solubilizing behavior in SB-16 micelle [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 99-105.
[2] WANG Lijuan, SHI Jing, ZHAO Fangjian. Molecular dynamics simulation of zwitterionic surfactant sulfobetaine at the vapor/liquid interface [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 83-89.
[3] SHI Jing1,2, L Kai2, YUAN Shi-ling2*. Molecular dynamics simulation of alkyl benzene sulfonate at the oil-water interface [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 77-82.
[4] LV Wei,WU Li-li,XU Run-chun,WU You-shi,GAI Hong-de,ZOU Ke . Preparation and characterization of two-dimensional  Bi2O3  nanoslices [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 109-112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[2] SUN Cong-zheng,GUAN Cong-sheng,QIN Jing-yu,CHENG Chuan . The structure and performances of the electroless Ni-P alloy coating on aluminum alloy[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 108 -112 .
[3] WANG Bai-wei,CAO Sheng-le . A mult-objective assessment method of the effects of industrial waste-water management[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 89 -92 .
[4] CHOU Wu-Sheng, WANG Shuo. Study on the adaptive algorithm of the force reflection robotic master under large stiffness of the environment[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 1 -5 .
[5] CAO Gang, DONG Chao-Yang, HUANG Ji-Bao, XUE Yu-Qing. Power system inter-area oscillation damping control with FACTS devies[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 31 -36 .
[6] LI Yi-bin ,RUAN Jiu-hong ,LIU Lu-yuan,SONG Rui,RONG Xue-wen . Vehicle longitudinal acceleration control based on ADRC[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 1 -04 .
[7] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[8] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92 -95 .
[10] QU Yan-peng,CHEN Song-ying,LI Chun-feng,WANG Xiao-peng,TENG Shu-ge . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 16 -20 .