Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (2): 88-95.doi: 10.6040/j.issn.1672-3961.0.2018.342

• Machine Learning & Data Mining • Previous Articles     Next Articles

Real-time traffic prediction based on MGU for large-scale IP backbone networks

Fang GUO1(),Lei CHEN1,2,3,Ziwen YANG1   

  1. 1. School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
    2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, Jiangsu, China
    3. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2018-08-13 Online:2019-04-20 Published:2019-04-19
  • Supported by:
    江苏省自然科学基金(BK20161516);中国博士后科学基金(2015M581794);国家自然科学基金(61872190)

Abstract:

In order to overcome the shortcomings of long short-term memory (LSTM) computing cost, a real-time traffic prediction method based on minimum gated unit (MGU) for large-scale IP backbone networks was proposed. The experimental results showed that compared with the LSTM-based traffic prediction method, the proposed method achieved fairly or even better traffic prediction performance with less model training time, meanwhile it outperformed the most advanced feed forward neural network (FFNN), LSTM and gated recurrent unit(GRU) in terms of prediction accuracy and real-time performance.

Key words: network traffic prediction, large-scale IP backbone networks, recurrent neural network, long short-term memory, minimal gated units

CLC Number: 

  • TP393

Fig.1

The flows and operations of LSTM"

Fig.2

The flows and operations of GRU"

Fig.3

The flows and operations of MGU"

Fig.4

Slide window for building training data"

Fig.5

Network traffic prediction model based on MGU"

Fig.6

Traffic prediction results about the 53th OD flowin different models"

Table 1

The total parameters and precision ofdifferent models"

单元名称 #参数 平均MAE(103)
FFNN 10 689 2.47
LSTM 49 985 2.10
GRU 37 505 1.95
MGU 25 025 1.84

Fig.7

The distribution of MAE in MGU model and FFNNmodel for predicting network traffic"

Fig.8

The distribution of MAE in MGU model and LSTM model for predicting network traffic"

Fig.9

The distribution of MAE in MGU model andFFNN model for predicting network traffic"

1 QU H , MA W T , ZHAO J H , et al. Prediction method for network traffic based on maximum correntropy criterion[J]. China Communications, 2013, 10 (1): 134- 145.
doi: 10.1109/CC.2013.6457536
2 田中大, 李树江, 王艳红, 等. 高斯过程回归补偿ARIMA的网络流量预测[J]. 北京邮电大学学报, 2017, 40 (6): 65- 73.
TIAN Zhongda , LI Shujiang , WANG Yanhong , et al. Network traffic prediction based on ARIMA with gaussian process regression compensation[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40 (6): 65- 73.
3 AZZOUNI A, PUJOLLE G. A long short-term memory recurrent neural network framework for network traffic matrix prediction[EB/OL]. (2017-06-08)[2018-04-15]. https://arxiv.org/abs/1705.05690.
4 LANER M , SVOBODA P , RUPP M . Parsimonious fitting of long-range dependent network traffic using A RMA models[J]. IEEE Communications Letters, 2013, 17 (12): 2368- 2371.
doi: 10.1109/LCOMM.2013.102613.131853
5 YADAV R K , BALAKRISHNAN M . Comparative evaluation of ARIMA and ANFIS for modeling of wireless network traffic time series[J]. Eurasip Journal on Wireless Communications & Networking, 2014, 2014 (1): 8- 15.
6 KATRIS C , DASKALAKI S . Comparing forecasting approaches for Internet traffic[J]. Expert Systems with Applications, 2015, 42 (21): 8172- 8183.
doi: 10.1016/j.eswa.2015.06.029
7 NIE L S , JIANG D D , GUO L , et al. Traffic matrix prediction and estimation based on deep learning in large-scale IP backbone networks[J]. Journal of Network & Computer Applications, 2016, 76 (C): 16- 22.
8 LIANG Y , QIU L . Network traffic prediction based on SVR improved by chaos theory and ant colony optimization[J]. International Journal of Future Generation Communication & Networking, 2015, 8 (1): 484- 488.
9 Xiang C , Qu P , Qu X . Network traffic prediction based on MK-SVR[J]. Journal of Information & Computational Science, 2015, 12 (8): 3185- 3197.
10 HONG W C . Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting[J]. Neural Computing and Applications, 2012, 21 (3): 583- 593.
doi: 10.1007/s00521-010-0456-7
11 LV Y , DUAN Y , KANG W , et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (2): 865- 873.
12 江露琪, 孙文胜. 基于改进的BP神经网络的网络流量预测模型[J]. 通信技术, 2017, 50 (1): 68- 73.
JIANG Luqi , SUN Wensheng . Research and implementation of network traffic prediction based on modified BP neural network[J]. Communication Technology, 2017, 50 (1): 68- 73.
13 SHAO H X, SOONG B H. Traffic flow prediction with Long Short-Term Memory Networks (LSTMs)[C]// Region 10 conference (TENCON 2016). Singapore: IEEE, 2017: 2986-2989.
14 LUO X , ZHOU W , WANG W , et al. Attention-based relation extraction with bidirectional gated recurrent unit and highway network in the analysis of geological data[J]. IEEE Access, 2018, 27 (6): 5705- 5715.
15 FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//In Proceedings of the Youth Academic Annual Conference of Chinese Association of Automation (YAC). Wuhan: IEEE, 2016: 324-328.
16 ZHOU G B , WU J , ZHANG C L , et al. Minimal gated unit for recurrent neural networks[J]. International Journal of Automation and Computing, 2016, 13 (3): 226- 234.
doi: 10.1007/s11633-016-1006-2
17 HOCHREITER S , SCHMIDHUBER J . Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
18 BENGIO Y , SIMARD P , FRASCONI P . Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5 (2): 157- 166.
doi: 10.1109/72.279181
19 CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2018-04-15]. https://arxiv.org/abs/1412.3555.
20 LAKHINA A , PAPAGIANNAKI K , CROVELLA M , et al. Structural analysis of network traffic flows[J]. Acm Sigmetrics Performance Evaluation Review, 2004, 32 (1): 61- 72.
doi: 10.1145/1012888
21 JIANG D D , WANG X , GUO L , et al. Accurate estimation of large-scale IP traffic matrix[J]. AEU - International Journal of Electronics and Communications, 2011, 65 (1): 75- 86.
doi: 10.1016/j.aeue.2010.02.008
22 UHLIG S , QUOITIN B , LEPROPRE J , et al. Providing public intradomain traffic matrices to the research community[J]. Acm Sigcomm Computer Communication Review, 2006, 36 (1): 83- 86.
doi: 10.1145/1111322
23 KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30)[2018-04-15]. https://arxiv.org/abs/1412.6980.
[1] Ya'nan YANG,Bin XIA,Nan XIE,Wenhao YUAN. Hybrid localization algorithm based on BP neural network and multivariable Taylor series [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 36-40.
[2] ZHANG Xihua, LU Shanshan, SU Jianjun. Countermeasure and technology patent development of global energy interconnection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 143-150.
[3] HE Qijia, LIU Zhenbing, XU Tao, JIANG Shujie. MR image classification based on LBP and extreme learning machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 86-93.
[4] MA Wenjing, WU Dongya, TANG Kai, WANG Dongzhu. A design method for object resolution system applied in transport field [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(4): 10-18.
[5] WANG Qiming, LI Zhanguo, FAN Aiwan. Quantum ant colony algorithm based on the game theory [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 33-36.
[6] HAN Zhongming, WU Yang, TAN Xusheng, LIU Wen, YANG Weijie. Comparison and analysis on measure indexes for structural hole nodes in social network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 1-8.
[7] SUN Xiang-hua. The improvement of wireless sensor networks routing algorithm based on the distance vector simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 25-30.
[8] LIU Qi, LIU Yi-xun, QIN Feng-lin. Modeling research of free riding in P2P streaming systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 31-36.
[9] JI Tao, LI Yong-zhong. Blind data processing in cloud computing based on trusted computing mechanisms [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 30-34.
[10] LIU Dong-hui1,2, JIANG Wei1*. Research on Web negative information mining based on event ontology [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 35-40.
[11] DING Yan, LI Yong-zhong*. Research on intrusion detection algorithm based on PCA and semisupervised clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 41-46.
[12] CAI Xiaojun , ZHAGN Qing , CHAI Qiaolin 1, KONG Suli 2. AnDivided multipath dynamic source routing based on energybalanced [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 141-145.
[13] Chen Dongyan. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 41-49.
[14] CAI Zhong-xin,ZHANG Hua-zhong . The clustering protocol based on a sleeping and selective-gateway mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 56-60 .
[15] HUANG Zhong, GE Liansheng. An unified access method for Web services in IoT based on CoAP [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(4): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Su-yu,<\sup>,AI Xing<\sup>,ZHAO Jun<\sup>,LI Zuo-li<\sup>,LIU Zeng-wen<\sup> . Milling force prediction model for highspeed end milling 3Cr2Mo steel[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(1): 1 -5 .
[2] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[3] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[4] LI Liang, LUO Qiming, CHEN Enhong. Graph-based ranking model for object-level search
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 15 -21 .
[5] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[6] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[7] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27 -32 .
[9] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[10] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .