JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2015, Vol. 45 ›› Issue (2): 33-36.doi: 10.6040/j.issn.1672-3961.2.2014.045

Previous Articles     Next Articles

Quantum ant colony algorithm based on the game theory

WANG Qiming1,2, LI Zhanguo1,2, FAN Aiwan1,2   

  1. 1. School of Computer Science and Technology, Pingdingshan University, Pingdingshan 467002, Henan, China;
    2. School of Software Engineering, Pingdingshan University, Pingdingshan 467002, Henan, China
  • Received:2014-04-01 Revised:2015-01-30 Online:2015-04-20 Published:2014-04-01

Abstract: Local optimum and low convergence rate were the main problems when used Quantum ant colony algorithm to solve combinatorial optimization, a quantum ant colony algorithm based on game theory (GQACA) was put forward. The algorithm generated a game sequence by the repeated game model, which made every game produce maximum benefit and get Nash equilibrium of the corresponding game process. Five typical test functions were used to make experiment test on the optimal performance of the GQACA algorithm.The experiments showed that the convergence precision and stability of the GQACA algorithm were superior to QACA algorithm and ACA algorithm.

Key words: the game theory, nash equilibrium, function optimization, combinatorial optimization, quantum ant colony algorithm

CLC Number: 

  • TP393
[1] 段海滨,王道波,于秀芬. 蚁群算法的研究进展评述[J]. 自然杂志,2006,28(2):102-105. DUAN Haibin, WANG Daobo, YU Xiufen. Review on research progress in ant colony algorithm[J]. Chinese Journal of Nature, 2006, 28(2):102-105.
[2] DORIGO M, GARO G D, GAMBARDELLA M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2):137-172.
[3] STTZLE T, DORIGO M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4):358-365.
[4] 金弟, 杨博, 刘杰, 等. 复杂网络簇结构探测—基于随机游走的蚁群算法[J]. 软件学报, 2012,23(3):451-464. JIN Di, YANG Bo, LIU Jie, et al. Ant colony optimization based on random walk for community detection in complex networks[J]. Journal of Software, 2012, 23(3):451-464.
[5] LI P C, LI S Y. Quantum ant colony algorithm for continuous space optimization[J]. Control Theory and Applications, 2008, 25(2):237-241.
[6] LI P, WANG H. Quantum ant colony optimization algorithm based on bloch spherical search[J]. Neural Network World, 2012, 22(4):325-341.
[7] 袁浩. 基于量子蚁群算法的粗糙集属性约简方法[J]. 计算机工程与科学, 2010, 32(5):82-84. YUAN Hao. A rough set attribute reduction method based on the quantum ant colony algorithm[J]. Computer Engineering & Science, 2010, 32(5):82-84.
[8] LI P, SONG K, YANG E. Quantum ant colony optimization with application[C]//2010 Sixth International Conference on Natural Computation (ICNC). Yantai, China:IEEE, 2010:2989-2993.
[9] HONGGANG W, LIANG M, HUIZHEN Z, et al. Quantum-inspired ant algorithm for knapsack problems[J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 1012-1016.
[10] 沈鹏. 物流配送路径优化问题求解的量子蚁群算法[J].计算机工程与应用, 2013, 49(21):56-59. SHEN Peng. Quantum ant colony algorithm for optimization of logistics distribution route[J]. Computer Engineering and Applications, 2013, 49(21):56-59.
[11] 贾瑞玉,李亚龙,管玉勇. 求解旅行商问题的混合量子蚁群算法[J]. 计算机工程与应用, 2013,49(22):36-39.JIA Ruiyu, LI Yalong, GUAN Yuyong. Hybrid quantum ant colony algorithm for traveling salesman problem[J]. Computer Engineering and Applications, 2013, 49(22):36-39.
[12] CHANDRA MOHAN B, BASKARAN R. A survey: ant colony optimization based recent research and implementation on several engineering domain[J]. Expert Systems with Applications, 2012, 39(4):4618-4627.
[13] 田有亮, 马建峰, 彭长根, 等. 秘密共享体制的博弈论分析[J]. 电子学报, 2011, 39(12):2790-2795. TIAN Youliang, MA Jianfeng, PENG Changgen, et al. Game-theoretic analysis for the secret sharing scheme[J]. Acta Electronica Sinica, 2011, 39(12):2790-2795.
[14] 刘玉岭, 冯登国, 吴丽辉, 等. 基于静态贝叶斯博弈的蠕虫攻防策略绩效评估[J]. 软件学报, 2012, 23(3):712-723. LIU Yuling, FENG Dengguo, WU Lihui, et al. Performance evaluation of worm attack and defense strategies based on static bayesian game[J]. Journal of Software, 2012, 23(3):712-723.
[15] 朱建明, SRINIVASAN Raghunathan. 基于博弈论的信息安全技术评价模型[J]. 计算机学报, 2009, 32(4):828-834. ZHU Jianming, SRINIVASAN Raghunathan. Evaluation model of information security technologies based on game theoretic[J]. Chinese Journal of Computers, 2009, 32(4):828-834.
[16] DORIGO M.Optimization learning and natural algorithms[D]. Milano:Department of Electronics,Politecnico di Milano, Italy, 1992.
[17] MANIEZZO V, DORIGO M, COLORNI A. The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1):29-41.
[18] DIOSAN L, OLTEAN M.What else is the evolution of PSO telling us[J]. Journal of Artificial Evolution and Applications, 2008, 8(2):1-12.
[19] THOMAS S, HOLGER H H. Max-min ant system[J].Future Generation Computer Systems, 2000, 16(8):889-914.
[20] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. Evolutionary Computation, IEEE Transactions on, 1997, 1(1):53-66.
[1] DAI Hongwei, YANG Yu, ZHONG Zhaoman, LI Cunhua. Improved quantum crossover immune clonal algorithm and its application [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 17-21.
[2] JIANG Peng-fei,WANG Zhen . Game analysis of manufacturer and different suppliers [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 117-119 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!