JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2015, Vol. 45 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1672-3961.3.2014.127

    Next Articles

Twice clustering method based on variable granularity

ZHU Hong1,2, DING Shifei2   

  1. 1. School of Medical Information, Xuzhou Medical College, Xuzhou 221005, Jiangsu, China;
    2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2014-10-08 Revised:2015-05-11 Online:2015-06-20 Published:2014-10-08

Abstract: In order to make up the deficiency of single clustering algorithm, a new twice clustering method based on the variable granularity and clustering network (VGTC) was presented, which combined granularity computing with clustering algorithms together. The aim of the first clustering was to find local data structure through searching an appropriate clustering layer. On this basis, the secondary clustering could complete clustering operation for domain. The creativity of VGTC was that the granularity of clustering could be adjusted by changing clustering algorithm parameters, and the advantages of two clustering algorithms could be combined together through granularity computing. The twice clustering adaptive method of variable granulation based on k-means and hierarchical clustering algorithms(KHVGTC was an example of VGTC) verified the accuracy and efficiency of VGTC algorithm by theory analysis and experimental results.

Key words: clustering network, twice clustering, VGTC, granularity computing, KHVGTC, clustering layer

CLC Number: 

  • TP181
[1] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J].软件学报, 2008, 19(1):48-60. SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1):48-60.
[2] STREHL A, GHOSH J. Cluster Ensembles:a knowledge reuse framework for combing multiple partitions[J]. Journal of Machine Learning Research, 2003, 3(3):583-617.
[3] MINAEI-BIDGOLI B, TOPCHY A, PUNCH W F. A comparison of resampling methods for clustering ensembles[C]//International Conference on Machine Learning, Models, Technologies and Applications. Las Vegas, USA:CSREA, 2004:939-945.
[4] 欧阳浩, 陈波, 王萌, 等. 基于网格的二次K-means聚类算法[J]. 广西工学院学报, 2012, 23(1):24-27. OUYANG Hao, CHEN Bo, WANG Meng, et al. Two times K-means algorithm based on grid[J]. Journal of Guangxi University of Technology, 2012, 23(1):24-27.
[5] 胡学钢, 曹永照, 吴共庆. 一种有效的数据流二次聚类算法[J]. 西南交通大学学报, 2009, 44(4):490-494. HU Xuegang, CAO Yongzhao, WU Gongqing. Effective twice-clustering algorithm for data streams[J]. Journal of Southwest Jiaotong University, 2009, 44(4):490-494.
[6] ZHU H, DING S F, XU L, et al. Research and development of granularityclustering[J]. Communications in Computer and Information Science, 2011, 159(5):253-258.
[7] DING S F, XU L, ZHU H, et al. Research and progress of cluster algorithms basedon granular computing[J]. International Journal of Digital Content Technology and its Applications, 2010, 4(5):96-104.
[8] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[9] PAWLAK Z. Rough sets[J]. International Journal of Information and Computer Sciences, 1982, 11(5):145-172.
[10] ZHANG B, ZHANG L. Theory and applications of problem solving[M]. AmsterdamThe Kingdom of Holland:North-Holland Publishing Co, 1992.
[11] RUSPINI E H. A new approach to clustering[J]. Information and Control, 1969, 15(1):22-32.
[12] 李远成, 阴培培, 赵银亮. 基于模糊聚类的推测多线程划分算法[J].计算机学报, 2014, 37(3):580-592. LI Yuancheng, YIN Peipei, ZHAO Yinliang. A FCM—based thread partitioning algorithm for speculative multithreading[J]. Chinese Journal of Computers, 2014, 37(3):580-592.
[13] 唐利明, 王洪珂, 陈照辉, 等. 基于变分水平集的图像模糊聚类分割[J]. 软件学报, 2014, 25(7):1570-1582. TANG Liming, WANG Hongke, CHEN Zhaohui, et al. Image fuzzy clustering segmentation based on variational level set[J]. Journal of Software, 2014, 25(7):1570-1582.
[14] MALYSZKO D, STEPANIUK J. Rough entropy hierarchical agglomerative clustering in image segmentation[J]. Transactions on Rough Sets XIII, 2011, 6499:89-103.
[15] YANTO I T R, HERAWAN T, DERIS M M. Data clustering using variable precision rough set[J]. Intelligent Data Analysis, 2011, 15(4):465-482.
[16] ZHANG L, ZHANG B. Quotient space based cluster analysis[C]//Proceedings of Foundations and Novel Approaches in Data Mining. Berlin, Germany:Springer, 2006:259-269.
[17] XUE Z X, SHANG Y L, FENG A F. Semi-supervised outlier detection based on fuzzy rough C-means clustering[J]. Mathematics and Computers in Simulation, 2010, 80(9):1911-1921.
[18] MAJI P. Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2011, 41(1):222-233.
[19] ZHOU J, PEDRYCZ W, MIAO D Q. Shadowed sets in the characterization of rough-fuzzy clustering[J]. Pattern Recognition, 2011, 44(8):1738-1749.[ZK)]
[20] [ZK(]张铃, 张钹. 模糊商空间理论(模糊粒度计算方法)[J]. 软件学报, 2003, 14(4):770-776. ZHANG Ling, ZHANG Bo. Theory of fuzzy quotient space (Methods of fuzzy granular computing)[J]. Journal of Software, 2003, 14(4):770-776.[ZK)]
[21] [ZK(]严莉莉, 张燕平, 胡必云.基于商空间粒度的覆盖聚类算法[J]. 计算机应用研究, 2008, 25(1):47-49. YAN Lili, ZhANG Yanping, HU biyun. Covering clustering algorithm based on quotient space granularity[J]. Application Research of Computers, 2008, 25(1):47-49.[ZK)]
[22] [ZK(]卜东波, 白硕, 李国杰. 聚类/分类中的粒度原理[J]. 计算机学报, 2002, 25(8):810-815. BU Dongbo, BAI Shuo, LI Guojie. Principle of granularity in clustering and classification[J]. Chinese Journal of Computers, 2002, 25(8):810-815.[ZK)]
[23] [ZK(]王伦文. 聚类的粒度分析[J]. 计算机工程与应用, 2006, 42(5):29-31. WANG Lunwen. Study of granular analysis in clustering[J]. Computer Engineering and Applications, 2006, 42(5):29-31.[ZK)]
[24] ZHU H, DING S F, XU L, et al. A parallel attribute reduction algorithm based on affinity propagation clustering[J]. Journal of Computers, 2013, 8(4):990-997.
[25] ZHU H, DING S F, HAN Z, et al. Attribute granulation based on attribute discernibility and AP algorithm[J]. Journal of Software, 2013, 8(4):834-841.[ZK)]
[26] [ZK(]汪小寒, 张燕平, 赵姝, 等. 基于分层递阶粒度聚类法的空气质量评价[J].计算机应用研究, 2013, 30(1):192-194.
WANG Xiaohan, ZHANG Yanping, ZHAO Shu, et al. Air quality evaluation based on delaminated granular clustering method[J]. Application Research of Computers, 2013, 30(1):192-194.
[1] WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59.
[2] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[3] CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7.
[4] YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202.
[5] LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42.
[6] LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70.
[7] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[8] WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14.
[9] CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22.
[10] WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61.
[11] HUANG Dan, WANG Zhihai, LIU Haiyang. A local collaborative filtering algorithm based on ranking recommendation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 29-36.
[12] MO Xiaoyong, PAN Zhisong, QIU Junyang, YU Yajun, JIANG Mingchu. Anomaly detection in network traffic based on online feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 21-27.
[13] PANG Juntao, ZHANG Hui, YANG Chunming, LI Bo, ZHAO Xujian. Multi-criteria collaborative filtering algorithm based on probabilistic matrix factorization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 65-73.
[14] ZHAI Junhai, ZHANG Sufang, HU Wenxiang, WANG Xizhao. Radial basis function extreme learning machine based on core sets [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 1-5.
[15] JIANG Feng, DU Junwei, LIU Guozhu, SUI Yuefei. A weight-based initial centers selection algorithm for K-modes clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!